Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980482

RESUMO

Water softening is a treatment process required to remove calcium (Ca(II)) and magnesium (Mg(II)) cations from water streams. Nanocomposites can provide solutions for such multiple challenges and have high performance and low application costs. In this work, a multimetallic cobalt, nickel, and copper 2-aminoterephthalic acid metal-organic framework ((Co/Ni/Cu-NH2BDC) MOF) was synthesized by a simple solvothermal technique. This MOF was supported on an Egyptian natural zeolite ore and was used for the adsorption of Ca(II) ions for water-softening applications. The adsorbent was characterized using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, and zeta potential measurements. The adsorption isotherm data for the prepared adsorbent toward Ca(II) were best fit using the Redlich-Peterson model and showed a maximum adsorption capacity of 88.1 mg/g. The adsorption kinetics revealed an equilibrium time of 10 min, which was best fit using the Avrami model. The intermolecular interactions of Ca(II) ions with zeolite and MOF were investigated by Monte Carlo simulations, molecular dynamics simulations, and FTIR and XRD analyses. The adsorption sites in the zeolite structure were oxygen atoms, while those in the MOF structure were amine nitrogen atoms. The Ca(II) ions are coordinated with the solvent molecules in both structures. Finally, the in vitro cytotoxicity of this nanocomposite was assessed, revealing viability levels of 74.57 ± 2.1% and 21 ± 2.79% for Vero and African green monkey kidney and human liver (HepG2) cells, respectively. Cytotoxicity assays help assess the environmental impact of these materials, ensuring that they do not harm aquatic organisms or disrupt ecosystems. Thus, this study demonstrated the valorization of MOF/zeolite as a valuable and industry-ready adsorbent that can appropriate Ca(II) contaminants from aqueous streams.

2.
J Contam Hydrol ; 264: 104364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749070

RESUMO

The increase in antibiotic residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. In our study, we used cellulose-based layered double hydroxide (LDH) as an efficient adsorbent and nanocarrier for both sulfamethoxazole (SMX) and cefixime (CFX) residues due to their biodegradability and biocompatibility. Chemical processes are measured according to green chemistry metrics to identify which features adhere to the principles. A GREEnness Assessment (ESA), Analytical GREEnness Preparation (AGREEprep), and Analytical Eco-Scale Assessments (ESA) were used to assess the suitability of the proposed analytical method. We extensively analyzed the synthesized CoFe LDH/cellulose before and after the adsorption processes using XRD, FTIR, and SEM. We investigated the factors affecting the adsorption process, such as pH, adsorbent dose, concentrations of SMX and CFX and time. We studied six nonlinear adsorption isotherm models at pH 5 using CoFe LDH, which showed maximum adsorption capacities (qmax) of 272.13 mg/g for SMX and 208.00 mg/g for CFX. Kinetic studies were also conducted. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed on Vero cells in direct contact with LDH nanocomposites to evaluate the cytotoxicity and side effects of cellulose-based CoFe LDH. The cellulose-based CoFe LDH nanocomposite demonstrated excellent cytocompatibility and less cytotoxic effects on the tested cell line. These results validate the potential use of these unique LDH-based cellulose cytocompatible biomaterials for water treatment applications. The cost of the prepared adsorbents was investigated.


Assuntos
Cefixima , Celulose , Sulfametoxazol , Poluentes Químicos da Água , Celulose/química , Sulfametoxazol/química , Sulfametoxazol/toxicidade , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Cefixima/química , Antibacterianos/química , Antibacterianos/toxicidade , Células Vero , Hidróxidos/química , Chlorocebus aethiops , Nanocompostos/química , Nanocompostos/toxicidade , Química Verde/métodos
3.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38423087

RESUMO

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Assuntos
Mucormicose , Pontos Quânticos , Ratos , Animais , Pontos Quânticos/química , Antifúngicos/farmacologia , Carbono/farmacologia , Carbono/química , Nitrogênio/química
4.
RSC Adv ; 13(40): 27934-27945, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736558

RESUMO

Efficient electrocatalysts, with high tolerance to methanol oxidation, good stability, and acceptable cost are the main requisites for promising direct methanol fuel cell (DMFC) electrode materials. This target can be achieved by the integration of different active materials with unique structures. In this work, a cobalt metal-organic framework (Co-MOF) flower structure was prepared by a hydrothermal method, and then a simple ultrasonication method was employed to anchor carbon nanotubes (CNTs) in between the MOF flower petals and fabricate a Co-MOF/CNT hybrid composite. Different ratios of CNTs were used in the composite preparations, namely 25, 50, and 75 wt% of the composite. The nanocomposites were entirely investigated using different characterization techniques, such as XRD, FTIR, SEM, TEM, and XPS. Comparative electrochemical measurements confirmed that due to the integration of highly conductive CNTs with the porous active fascinating structure of Co-MOF, Co-MOF/50% CNTs exhibited improved electrocatalytic activity with a current density of 35 mA cm-2 at a potential of 0.335 V and a scan rate of 50 mV s-1. The excellent electrochemical activity and stability could be due to the synergy between Co-MOF and the CNTs that conferred adequate active sites for methanol electro-oxidation and a lower equivalent series resistance, as revealed from the electrochemical impedance spectroscopy study. This study opens a new avenue to decrease the utilization of platinum and increase the methanol oxidation activity using low-cost catalysts.

5.
Sci Rep ; 13(1): 7227, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142660

RESUMO

Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Óxido Ferroso-Férrico , Escherichia coli , Staphylococcus aureus , Metais Pesados/química , Ferro/análise , Água , Antibacterianos/química , Nanopartículas Magnéticas de Óxido de Ferro , Adsorção , Cinética , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
6.
Environ Sci Pollut Res Int ; 27(34): 42791-42805, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725561

RESUMO

New approaches are required for prevention and control of biofilm-producing bacteria and consequently mitigating the health problems of bovine clinical mastitis. This work designed to determine prevalence rates of biofilm-producing bacteria that causing bovine clinical mastitis and evaluate the anti-biofilm effectiveness of novel nanocomposite of zinc-aluminum layered double hydroxide intercalated with gallic acid (GA) as chelating agent (Zn-Al LDH/GA) on the prevention and control of environmental pathogenic bacteria; Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Staphylococcus aureus (S. aureus), and Coagulase-negative staphylococci (CNS), besides Listeria monocytogenes (L. monocytogenes) and assess the ability to use as an antimicrobial agent, and/or sanitizer for milking equipment. All samples (n = 230) involved clinical mastitis cow's milk (n = 50) beside environmental samples (n = 180) were collected then examined for isolation and identification of bacterial pathogens. Zn-Al LDH/GA nanocomposite was synthesized using co-precipitation method, then characterized by Fourier-transform infrared spectroscopy (FT-IR); X-ray diffraction (XRD); field emission scanning electron microscopy (FESEM); high-resolution transmission electron microscopy (HRTEM); thermogravimetric analysis (TGA); differential thermal analysis (DTA); zeta potential; DLS analysis; and Brunauer, Emmett, and Teller (BET) surface area. The anti-biofilm activity of nanocomposite against mastitis-causing bacteria was detected using the broth micro-dilution and disc-diffusion assay. Results, the minimum concentration of Zn-Al LDH/GA that inhibited the growth of gram-positive and negative bacteria, were 312-625 and 5000 µg/mL, respectively. The LD50 of Zn-Al LDH/GA was determined in mice at 1983.3 mg/kg b.wt. As a conclusion, Zn-Al LDH/GA nanocomposite proved its efficiency as an antimicrobial agent and/or sanitizer used for cleaning of milking equipment, due to it could inhibit the growth and multiplication of potentially pathogenic bacteria that causing clinical mastitis and its formation of biofilm on the milking equipment. Zn-Al LDH/GA was found to use under varying pH conditions compared with other commercial sanitizer used besides the formation of nanocomposite increases the material stability.


Assuntos
Nanocompostos , Staphylococcus aureus , Animais , Biofilmes , Bovinos , Escherichia coli , Feminino , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...