Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(7): 2582-2595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35930359

RESUMO

Sperm motility, normal morphology, viability, spermatozoa DNA damage, and lipid peroxidation are all affected by semen cryopreservation. The goal of this study was to see how effective cupric oxide nanoparticles (CuONPs) are as a cryo-extender additive on post-thawed sperm parameters. An artificial vagina was used to collect semen samples from five mature Zaraibi bucks (2-3 years). Ejaculates were pooled and separated into two fractions (A&B), a fraction (A) was left without being centrifuged and a fraction (B) was centrifuged to remove seminal plasma. Both fractions were diluted with tris egg yolk citrate extender (TECE) and then divided into five equal aliquots, each supplemented with (0, 10, 20, 40, and 60 ppm/ml) CuONPs. The findings revealed that removing seminal plasma before cryopreservation harms sperm parameters. Sperm motility, viability index, membrane integrity, biochemical antioxidant marker, DNA integrity, and MDA level improved after supplementation with CuONPs up to 60 ppm/ml, the most prominent significant positive effect was obtained with the highest dose (60 ppm/ml) without removal of the seminal plasm compared to control group. In conclusion: The presence of seminal plasma with a high concentration of CuONPs (up to 60 ppm/ml) may help to mitigate the negative effects of cryo-preservation.


Assuntos
Nanopartículas , Preservação do Sêmen , Feminino , Masculino , Animais , Sêmen , Cabras , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Espermatozoides , Criopreservação/veterinária , Crioprotetores/farmacologia
2.
Anim Biotechnol ; 34(7): 2657-2673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35981058

RESUMO

This study investigated the role of ξ Potential on Monometallic (MM) and Bimetallic (BM) Calcium Oxide/Magnetite Iron Oxides nanoparticles to stimulate the immune response. Metallic nanoparticles (MNPs) were biosynthesis using Pseudomonas fluorescens S48. MNPs characterization was carried out by UV-Vis spectra, XRD analysis, Zeta potential and Particles size, SEM-EDS, and TEM, and the concentrations were calculated by ICP-AES. The immune system activity was measured by estimation of lymphocytes transformation, phagocytic activity. The end point was in evaluating the toxicity of Metallic NPs by comet assay. SEM-EDS and TEM micrographs showed that MM CaO and Fe3O4 represent a perfect example of zero-dimensional (0-D) NPs with cubic and spherical particles in shape, while BM CaO/Fe3O4 NPs appeared in the form of Core-shell structure. The variations effect of novelty MM, BM CaO/Fe3O4 NPs in enhancing immune activity were based on the ξ Potential whereas negatively and positively charged. These findings demonstrate that the cationic CaO/Fe3O4 NPs are inefficient in stimulating the immune system which causes a high cytotoxic effect. But the anionic CaO/Fe3O4 NPs have advantages in targeting the immune system because of enhanced delivery to the cells through adsorptive endocytosis as well as the half-life clearance from the blood.


Assuntos
Óxido Ferroso-Férrico , Nanopartículas de Magnetita , Animais , Óxido Ferroso-Férrico/química , Óxidos , Nanopartículas de Magnetita/química , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...