Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 591-602, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112274

RESUMO

The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.


Assuntos
Amônia , Microbiota , Amônia/metabolismo , Amônia/farmacologia , Biocombustíveis , Reatores Biológicos , Metagenoma , Anaerobiose , Metano , Metagenômica
2.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512885

RESUMO

This study aimed to investigate the role of the bioaugmented critical biomass that should be injected for successful bioaugmentation for addressing ammonia inhibition in anaerobic reactors used for biogas production. Cattle manure was used as a feedstock for anaerobic digestion (AD). A mixed microbial culture was acclimated to high concentrations of ammonia and used as a bioaugmented culture. Different volumes of bioaugmented culture were injected in batch anaerobic reactors under ammonia toxicity levels i.e., 4 g of NH4+-N L-1. The results showed that injecting a volume equal to 65.62% of the total working reactor volume yielded the best methane production. Specifically, this volume of bioaugmented culture resulted in methane production rates of 196.18 mL g-1 Volatile Solids (VS) and 245.88 mL g-1 VS after 30 and 60 days of AD, respectively. These rates were not significantly different from the control reactors (30d: 205.94 mL CH4 g-1 VS and 60d: 230.26 mL CH4 g-1 VS) operating without ammonia toxicity. Analysis of the microbial community using 16S rRNA gene sequencing revealed the dominance of acetoclastic methanogen members from the genus Methanosaeta in all reactors.

3.
Waste Manag Res ; 40(8): 1093-1109, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35057678

RESUMO

Traditionally, digestate is considered a waste, which is used as fertiliser in the agriculture industry. Recent studies focus on increasing the profitability of digestate by extracting reusable nutrients to promote biogas plants cost-effectiveness, sustainable management and circular economy. This review focuses on the post-treatment and valorization of liquor which is produced by solid-liquid fractioning of digestate. Nutrient recovery and removal from liquor are possible through mechanical, physicochemical and biological procedures. The processes discussed involve complex procedures that differ in economic value, feasibility, legislative restrictions and performance. The parameters that should be considered to employ these techniques are influenced by liquor characteristics, topography, climate conditions and available resources. These are key parameters to keep in mind during designing and manufacturing a biogas plant. In the following chapters, a discussion on available liquor treatment methods takes place. The present study examines the critical aspects of the available liquor treatment methods.


Assuntos
Biocombustíveis , Fertilizantes , Agricultura , Anaerobiose
4.
Appl Microbiol Biotechnol ; 100(10): 4367-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26728017

RESUMO

In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.


Assuntos
Desnitrificação , Microbiologia Industrial/métodos , Nitrificação , Fósforo/isolamento & purificação , Esgotos/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos , Nitrogênio/análise , Águas Residuárias
5.
Environ Technol ; 35(9-12): 1219-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701918

RESUMO

Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.


Assuntos
Esterco/microbiologia , Gerenciamento de Resíduos , Zeolitas/administração & dosagem , Amônia/análise , Anaerobiose , Animais , Bovinos , Ácidos Graxos Voláteis/análise , Concentração de Íons de Hidrogênio , Aves Domésticas , Suínos
6.
FEMS Microbiol Ecol ; 83(1): 38-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22809020

RESUMO

Methanogenesis from acetate (aceticlastic methanogenesis or syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis) is the most important step for the biogas process. The major environmental factors influencing methanogenesis are volatile fatty acids, ammonia, pH, and temperature. In our study, the effect of acetate and ammonia concentration on the methanogenic pathway from acetate and on the methanogenic communities was elucidated in two experiments: one where inocula were gradually exposed to increasing concentrations of acetate or ammonia, and another with direct exposure to different ammonia concentrations. The methanogenic pathway was determined by following the production of (14) CH(4) and (14) CO(2) from acetate labeled in the methyl group (C-2). Microbial communities' composition was determined by fluorescence in situ hybridization. Upon acclimatization to acetate and ammonia, thermophilic cultures clearly shifted their acetate bioconversion pathway from SAO with subsequent hydrogenotrophic methanogenesis (mediated by Methanobacteriales spp. and/or Methanomicrobiales spp.) to aceticlastic methanogenesis (mediated by Methanosarcinaceae spp.). On the contrary, acclimatization process resulted in no pathway shift with the mesophilic acclimatized culture. When nonacclimatized thermophilic culture was exposed to high ammonia levels (7 g NH4 +-N L(-1)), aceticlastic Methanosarcinaceae spp. was found to be the dominant methanogen.


Assuntos
Ácido Acético/metabolismo , Amônia/metabolismo , Metano/biossíntese , Methanobacteriales/metabolismo , Methanomicrobiales/metabolismo , Methanosarcinaceae/metabolismo , Aclimatação , Biocombustíveis , Hibridização in Situ Fluorescente , Consórcios Microbianos
7.
Biotechnol Bioeng ; 94(2): 296-302, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16570323

RESUMO

Hyper-thermophilic hydrogen production without methane was demonstrated for the first time in granular up-flow anaerobic sludge blanket (UASB) system fed with glucose using mixed cultures. The maximum hydrogen yield in this study was 2.47 +/- 0.15 mol H2/mol glucose. This high yield has never been previously reported in mixed culture systems and it was likely due to more favorable thermodynamic conditions at hyper-thermophilic temperatures. Different start-up strategies (bromoethanosulfonate (BES) addition and flow recycle) were evaluated. BES addition during start-up prevented the establishment of methanogenic cultures in granules. Flow recycle was important to achieve higher hydrogen yield through enriching better hydrogen-producing organisms and reduced the start-up period as well. This study indicated UASB system was a promising system for hydrogen production.


Assuntos
Bactérias Anaeróbias/fisiologia , Reatores Biológicos/microbiologia , Temperatura Alta , Hidrogênio/metabolismo , Esgotos/microbiologia , Biomassa , Esgotos/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...