Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 2: 346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552299

RESUMO

The pathophysiological role of mammalian target of rapamycin complex 1 (mTORC1) in neurodegenerative diseases is established, but possible therapeutic targets responsible for its activation in neurons must be explored. Here we identified solute carrier family 38a member 1 (SNAT1, Slc38a1) as a positive regulator of mTORC1 in neurons. Slc38a1flox/flox and Synapsin I-Cre mice were crossed to generate mutant mice in which Slc38a1 was selectively deleted in neurons. Measurement of 2,3,5-triphenyltetrazolium chloride (TTC) or the MAP2-negative area in a mouse model of middle cerebral artery occlusion (MCAO) revealed that Slc38a1 deficiency decreased infarct size. We found a transient increase in the phosphorylation of p70S6k1 (pp70S6k1) and a suppressive effect of rapamycin on infarct size in MCAO mice. Autophagy inhibitors completely mitigated the suppressive effect of SNAT1 deficiency on neuronal cell death under in vitro stroke culture conditions. These results demonstrate that SNAT1 promoted ischemic brain damage via mTOR-autophagy system.


Assuntos
Sistema A de Transporte de Aminoácidos/antagonistas & inibidores , Sistema A de Transporte de Aminoácidos/metabolismo , Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Animais , Infarto Cerebral/etiologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Expressão Gênica , Loci Gênicos , Genoma , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção , Especificidade de Órgãos
2.
Glia ; 65(1): 198-208, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27726182

RESUMO

Similar to neurons, microglia have an intrinsic molecular clock. The master clock oscillator Bmal1 modulates interleukin-6 upregulation in microglial cells exposed to lipopolysaccharide. Bmal1 can play a role in microglial inflammatory responses. We previously demonstrated that gliotransmitter ATP induces transient expression of the clock gene Period1 via P2X7 purinergic receptors in cultured microglia. In this study, we further investigated mechanisms underlying the regulation of pro-inflammatory cytokine production by clock molecules in microglial cells. Several clock gene transcripts exhibited oscillatory diurnal rhythmicity in microglial BV-2 cells. Real-time luciferase monitoring also showed diurnal oscillatory luciferase activity in cultured microglia from Per1::Luciferase transgenic mice. Lipopolysaccharide (LPS) strongly induced the expression of pro-inflammatory cytokines in BV-2 cells, whereas an siRNA targeting Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), a core positive component of the microglial molecular clock, selectively inhibited LPS-induced interleukin-6 (IL-6) expression. In addition, LPS-induced IL-6 expression was attenuated in microglia from Bmal1-deficient mice. This phenotype was recapitulated by pharmacological disruption of oscillatory diurnal rhythmicity using the synthetic Rev-Erb agonist SR9011. Promoter analysis of the Il6 gene revealed that Bmal1 is required for LPS-induced IL-6 expression in microglia. Mice conditionally Bmal1 deficient in cells expressing CD11b, including microglia, exhibited less potent upregulation of Il6 expression following middle cerebral artery occlusion compared with that in control mice, with a significant attenuation of neuronal damage. These results suggest that the intrinsic microglial clock modulates the inflammatory response, including the positive regulation of IL-6 expression in a particular pathological situation in the brain, GLIA 2016. GLIA 2017;65:198-208.


Assuntos
Regulação da Expressão Gênica/genética , Interleucina-6/metabolismo , Microglia/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Camundongos Knockout , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Tempo , Regulação para Cima
3.
J Neurosci Res ; 94(5): 378-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26900013

RESUMO

This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Regulação para Cima/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
PLoS One ; 8(7): e69718, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874988

RESUMO

BACKGROUND: We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca(2+) levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca(2+) levels in cultured murine neocortical neurons. METHODOLOGY/PRINCIPAL FINDINGS: In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca(2+) levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca(2+) levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca(2+) levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca(2+) levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca(2+) levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. CONCLUSIONS/SIGNIFICANCE: Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca(2+) incorporation and cell death after NMDAR activation in neurons.


Assuntos
Cálcio/metabolismo , Etanol/farmacologia , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , N-Metilaspartato/farmacologia , Animais , Linhagem Celular , Ácido Glutâmico/farmacologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Desacopladora 2
5.
PLoS One ; 8(5): e63947, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691122

RESUMO

BACKGROUND: We have previously shown marked upregulation of the mRNA and corresponding protein for the cellular motor molecule myosin VI (Myo6) after an extremely traumatic stress experience, along with a delayed decrease in 5-bromo-2'-deoxyuridine incorporation in the murine hippocampus, a brain structure believed to undergo adult neurogenesis. In this study, we investigated the role of Myo6 in both proliferation and differentiation in pluripotent P19 cells by using stable transfection and RNA interference techniques. METHODOLOGY/PRINCIPAL FINDINGS: Stable overexpression of Myo6 not only led to significant inhibition of the reducing activity of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and the size of clustered aggregates in P19 cells, but also resulted in selectively decreased mRNA expression of the repressor type proneural gene Hes5 without affecting the expression of neuronal and astroglial marker proteins. In P19 cells transfected with Myo6 siRNA, by contrast, a significant increase was found in the size of aggregate and MTT reduction along with increased Sox2 protein levels, in addition to marked depletion of the endogenous Myo6 protein. In C6 glioma cells, however, introduction of Myo6 siRNA induced a drastic decrease in endogenous Myo6 protein levels without significantly affecting MTT reduction. The Ca(2+) ionophore A23187 drastically increased the luciferase activity in P19 cells transfected with a Myo6 promoter reporter plasmid, but not in HEK293, Neuro2A and C6 glioma cells transfected with the same reporter. CONCLUSIONS/SIGNIFICANCE: These results suggest that Myo6 may play a predominant pivotal role in the mechanism underlying proliferation without affecting differentiation to progeny lineages in pluripotent P19 cells.


Assuntos
Diferenciação Celular/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Análise de Variância , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA/genética , Luciferases , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Sais de Tetrazólio , Tiazóis , Transfecção
6.
PLoS One ; 7(10): e46177, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056257

RESUMO

BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA) and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR) by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4ß2 nAChR subtype antagonists dihydro-ß-erythroidine and 4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice defective of NMDA receptor subunit-1, nicotine was still effective in significantly inhibiting the proliferation. CONCLUSIONS/SIGNIFICANCE: Functional α4ß2 nAChR subtype would be constitutively expressed to play a role in the mechanism underlying the determination of proliferation and subsequent differentiation fate into a neuronal lineage in association with preferential promotion of Math1 expression in undifferentiated neural progenitors of developing rodent neocortex independently of NMDA receptor activation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/genética , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Mecamilamina/farmacologia , Camundongos , Camundongos Knockout , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Receptores Nicotínicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional
7.
J Neurosci Res ; 90(11): 2074-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22807215

RESUMO

The underlying mechanisms are still unclear for the neuroprotective properties of nicotine to date, whereas we have shown functional expression of nicotinic acetylcholine receptors (nAChRs) responsible for the influx of extracellular Ca(2+) in cultured rat cortical astrocytes. In this study, we investigated the possible involvement of astrocytic nAChRs in the neuroprotection by this agonist. Exposure to nicotine predominantly induced mRNA expression of glial cell line-derived neurotrophic factor (GDNF) among the different neurotrophic factors examined in cultured astrocytes, in a manner sensitive to nAChR antagonists, nifedipine, and aCa(2+) chelator. Nicotine significantly increased GDNF in a concentration-dependent manner in cultured astrocytes but not in neurons or neural progenitors even at the highest concentration used. In cultured astrocytes, a transient increase was seen in the expression of mRNA and corresponding protein for GDNF during sustained exposure to nicotine for 24 hr. Cytotoxicity mediated by oxidative, calcium, mitochondrial, or endoplasmic reticulum stress was invariably protected against in cortical neurons cultured with conditioned medium from astrocytes previously exposed to nicotine, and preincubation with the anti-GDNF antibody reduced the neuroprotection by conditioned medium from astrocytes exposed to nicotine. Intraperitoneal administration of nicotine transiently increased the number of cells immunoreactive for both GDNF and glial fibrillary acidic protein in rat cerebral cortex. These results suggest that astrocytic nAChRs play a role in the neuroprotection against different cytotoxins after predominant upregulation of GDNF expression through a mechanism relevant to the acceleration of extracellular Ca(2+) influx in rat brain in a particular situation.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , RNA Mensageiro/análise , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...