Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 19(3): 217-225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978931

RESUMO

Staphylococcus aureus (S. aureus) is one of the major opportunistic foodborne pathogens as well as a source of human and animal infections. As surveillance of S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) is limited in ice cream, a total of 240 ice cream samples were collected from three cities in Shaanxi province, China, and screened for S. aureus. All isolates were characterized by antimicrobial susceptibility testing, staphylococcal protein A typing, multilocus sequence typing, enterobacterial repetitive intergenic consensus typing, virulence, and resistance genes. S. aureus was recovered from 10 (4.2%) ice cream samples (13 isolates) with average count from 10 to 100 colony-forming units per gram in all cases. Resistance to amoxicillin/clavulanic acid, penicillin, and trimethoprim/sulfamethoxazole (each 100.0%) was most frequently observed, followed by ampicillin (76.9%), erythromycin (46.2%), ceftriaxone (30.8%), and cefoxitin (15.4%). A total of five types of antimicrobial resistance genes were detected, including ß-lactam (blaZ and mecA), macrolide (ermB and ermC), tetracycline (tetK), aminoglycoside [aac(6')/aph(2') and aph(3')-III], and trimethoprim (dfrG). All of the strains harbored at least one staphylococcal enterotoxins gene. The commonly detected virulence genes were selw and hld (100.0%), followed by selx (92.3%); hla (84.6%); pvl (76.9%); seg, sem, and sen (each 38.5%); sei, seo, and hlb (each 30.8%); sea, seb, selu, and sely (each 23.1%); sed, sej, sek, sep, and seq (each 15.4%); and ser (7.7%). ST5-t002, ST7-t091, and ST5225-t4911 (each 15.4%) were the predominant clones, followed by ST5-t045/t105, ST6-t701/t15417, ST25-t078, ST188-t189, and ST398-t034 (each 7.7%). Among the 13 strains of S. aureus, 2 isolates were detected as MRSA (15.4%), and the molecular type belonged to ST5225-IVa-t4911. Using a 98.8% similarity cutoff, the 13 isolates were divided into 5 clusters (I-1 to I-5). These results demonstrated that the prevalence of S. aureus and MRSA was low in ice cream. However, these isolates exhibited a high level of potential pathogenicity, which represents a potential health hazard for consumers.


Assuntos
Sorvetes , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , China/epidemiologia , Farmacorresistência Bacteriana , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Trimetoprima
2.
Foods ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34945505

RESUMO

Foodborne Staphylococcus aureus (S. aureus) has attracted widespread attention due to its foodborne infection and food poisoning in human. Shikonin exhibits antibacterial activity against a variety of microorganisms, but there are few studies on its antibacterial activity against S. aureus. This study aims to explore the antibacterial activity and mechanism of shikonin against foodborne S. aureus. The results show that the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of shikonin were equal for all tested strains ranging from 35 µg/mL to 70 µg/mL. Shikonin inhibited the growth of S. aureus by reducing intracellular ATP concentrations, hyperpolarizing cell membrane, destroying the integrity of cell membrane, and changing cell morphology. At the non-inhibitory concentrations (NICs), shikonin significantly inhibited biofilm formation of S. aureus, which was attributed to inhibiting the expression of cidA and sarA genes. Moreover, shikonin also markedly inhibited the transcription and expression of virulence genes (sea and hla) in S. aureus. In addition, shikonin has exhibited antibacterial ability against both planktonic and biofilm forms of S. aureus. Importantly, in vivo results show that shikonin has excellent biocompatibility. Moreover, both the heat stability of shikonin and the antimicrobial activity of shikonin against S. aureus were excellent in food. Our findings suggest that shikonin are promising for use as a natural food additive, and it also has great potential in effectively controlling the contamination of S. aureus in food and reducing the number of illnesses associated with S. aureus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...