Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(31): 37706-37716, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523263

RESUMO

Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (Tc) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)(Ti0.92Zr0.06Sn0.02)O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d33 of ∼820 pC N-1, electrostrain Smax/Emax of ∼2040 pm V-1, and figure of merit d33 × g33 of ∼23.5 × 10-12 m2 N-1, are simultaneously obtained without sacrificing Tc, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.

2.
ACS Appl Mater Interfaces ; 14(2): 3076-3083, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984909

RESUMO

Although the MPB composition 0.42PNN-0.21PZ-0.37PT ceramic has high piezoelectric properties, its temperature stability at room temperature is rather poor due to the low phase-transition temperature. By texture engineering using BaTiO3 (BT) as the template, the temperature stability of this material can be greatly improved. In the temperature range from room temperature up to 140 °C, the high effective piezoelectric strain constant d33* of 0.42PNN-0.21PZ-0.37PT-3BT only changed by 4.9% from 1278 to 1215 pm/V, while the d33* of the nontextured counterpart changed by 46.7% from the room temperature value of 920 pm/V with the maximum deviation to 1350 pm/V at 80 °C. In addition, the textured ceramic has higher piezoelectric properties, lower dielectric loss, and slightly higher coercive field. The room-temperature figure-of-merit d33 × g33 for PNN-PZT-2BT is increased by as much as 42% compared with the nontextured counterpart. Our results demonstrated that texture engineering is an effective way to improve the temperature stability of the MPB composition piezoceramics.

3.
ACS Appl Mater Interfaces ; 12(34): 38415-38424, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846483

RESUMO

High-performance piezoelectrics are pivotal to various electronic applications including multilayer actuators, sensors, and energy harvesters. Despite the presence of high Lotgering factor F001, two key limitations to today's relaxor-PbTiO3 textured ceramics are low piezoelectric properties relative to single crystals and high texture temperature. In this work, Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PYN-PMN-PT) textured ceramics with F001 ∼ 99% were synthesized at only 975 °C through liquid-phase-assisted templated grain growth, where of particular significance is that single-crystal properties, i.e., very large electrostrain Smax/Emax ∼ 1830 pm V-1, giant piezoelectric figure of merit d33 × g33 ∼ 61.3 × 10-12 m2 N-1, high electromechanical coupling k33 ∼ 0.90, and Curie temperature Tc ∼ 205 °C, were simultaneously achieved. Especially, the Smax/Emax and d33 × g33 values correspond to ∼180% enhancement as compared to the regularly 1200 °C-textured ceramics with F001 ∼ 96%, representing the highest values ever reported on piezoceramics. Phase-field simulation revealed that grain misorientation has a stronger influence on piezoelectricity than texture fraction. The ultrahigh piezoelectric response achieved here is mainly attributed to effective control of grain orientation features and domain miniaturization. This work provides important guidelines for developing novel ceramics with significantly enhanced functional properties and low synthesis temperature in the future and can also greatly expand application fields of piezoceramics to high-performance, miniaturized electronic devices with multilayer structures.

4.
Nat Mater ; 19(9): 999-1005, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32541934

RESUMO

Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality <111>-textured Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m-1, an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of <111>-textured NBT-SBT multilayer ceramics is up to 21.5 J cm-3, outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices.

5.
Molecules ; 23(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857591

RESUMO

Many studies have shown that it is important to consider the harmful effects of phenolic hormones on the human body. Traditional UV detection has many limitations, so there is a need to develop new detection methods. We demonstrated a simple and rapid surface-enhanced resonance Raman scattering (SERRS) based detection method of trace amounts of phenolic estrogen. As a result of the coupling reaction, there is the formation of strong SERRS activity of azo compound. Therefore, the detection limits are as low as 0.2 × 10-4 for estrone (E1), estriol (E3), and bisphenol A (BPA). This method is universal because each SERRS fingerprint of the azo dyes a specific hormone. The use of this method is applicable for the testing of phenolic hormones through coupling reactions, and the investigation of other phenolic molecules. Therefore, this new method can be used for efficient detection.


Assuntos
Estrogênios/química , Análise Espectral Raman , Compostos Benzidrílicos/química , Estriol/química , Estrogênios/metabolismo , Estrona/química , Humanos , Metabolômica/métodos , Nanopartículas Metálicas/química , Estrutura Molecular , Fenóis/química , Prata/química , Análise Espectral Raman/métodos
6.
Nanomaterials (Basel) ; 8(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789457

RESUMO

In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe3O4-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe3O4 hollow microspheres and Fe3O4-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe3O4-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe3O4 hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe3O4-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe3O4-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe3O4-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level.

7.
Nanomaterials (Basel) ; 8(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757998

RESUMO

Nowadays, synthetic organic dyes and pigments discharged from numerous industries are causing unprecedentedly severe water environmental pollution, and conventional water treatment processes are hindered due to the corresponding sophisticated aromatic structures, hydrophilic nature, and high stability against light, temperature, etc. Herein, we report an efficient fabrication strategy to develop a new type of highly efficient, low-cost, and magnetically recoverable nanocatalyst, i.e., FePt⁻Ag nanocomposites, for the reduction of methyl orange (MO) and rhodamine B (RhB), by a facile seed deposition process. X-ray diffraction results elaborate that the as-synthesized FePt⁻Ag nanocomposites are pure disordered face-centered cubic phase. Transmission electron microscopy studies demonstrate that the amount of Ag seeds deposited onto the surfaces of FePt nanocrystals increases when increasing the additive amount of silver colloids. The linear correlation of the MO and RhB concentration versus reaction time catalyzed by FePt⁻Ag nanocatalysts is in line with pseudo-first-order kinetics. The reduction rate constants of MO and RhB increase with the increase of the amount of Ag seeds. FePt⁻Ag nanocomposites show good separation ability and reusability, and could be repeatedly applied for nearly complete reduction of MO and RhB for at least six successive cycles. Such cost-effective and recyclable nanocatalysts provide a new material family for use in environmental protection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...