Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 251: 116101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324971

RESUMO

Abnormal levels of uric acid (UA) in urine serve as warning signs for gout and metabolic cardiovascular diseases, necessitating the monitoring of UA levels for early prevention. However, the current analytical methods employed suffer from limitations in terms of inadequate suitability for home-based applications and the requirement of non-invasive procedures. In this approach, creatinine, a metabolite with a constant excretion rate, was incorporated as an endogenous internal standard (e-IS) for calibration, presenting a rapid, pretreatment-free, and accurate strategy for quantitative determination of UA concentrations. By utilizing urine creatinine as an internal reference value to calibrate the signal fluctuation of surface-enhanced Raman spectroscopy (SERS) of UA, the quantitative accuracy can be significantly improved without the need for an external internal standard. Due to the influence of the medium, UA, which carries a negative charge, is selectively adsorbed by Au@Ag nanoparticles functionalized with hexadecyltrimethylammonium chloride (CTAC) in this system. Furthermore, a highly convenient detection method was developed, which eliminates the need for pre-processing and minimizes matrix interference by simple dilution. The method was applied to the urine detection of different volunteers, and the results were highly consistent with those obtained using the UA colorimetric kit (UACK). The detection time of SERS was only 30 s, which is 50 times faster than UACK. This quantitative strategy of using urinary creatinine as an internal standard to correct the SERS intensity of uric acid is also expected to be extended to the quantitative detection needs of other biomarkers in urine.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Ácido Úrico/urina , Creatinina/urina , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química
2.
J Chem Phys ; 158(2): 024203, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641419

RESUMO

A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Glicoproteína da Espícula de Coronavírus , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...