Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 21(4): 604-614, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30556243

RESUMO

Vitamin E is a general term used to describe a group of eight lipophilic compounds known as tocochromanols. These vitamin E variants are chemically categorised into two classes formed by α-, ß-, γ- and δ- tocopherols and tocotrienols isoforms, respectively. The present study describes the concurrent regulation of genes and metabolites orchestrating vitamin E biosynthesis in olive drupes of five distinctive Greek olive cultivars. A combination of analytical, biochemical and molecular approaches was employed in order to carry out comparative analyses, including real-time RT-qPCR for gene expression levels and HPLC analysis of metabolite content. Findings indicated that tocochromanol levels and composition, oil content, gene expression levels as well as total antioxidant activity were highly dependent on cultivar and, to a lesser extent, on fruit developmental stage. Specifically, cultivars 'Kalokairida' and 'Lianolia Kerkyras' demonstrated the highest vitamin E content. The latter possessed high tocochromanol content combined with highest overall antioxidant activity in all developmental stages, concomitant with the up-regulation expression profile of HPPD. The genotypic imprint versus the temporal contribution to vitamin E levels, as well as the potential link to lipid peroxidation amelioration, are discussed.


Assuntos
Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Olea/metabolismo , Vitamina E/biossíntese , Antioxidantes/metabolismo , Genes de Plantas/genética , Peroxidação de Lipídeos , Redes e Vias Metabólicas , Olea/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
2.
Plant Dis ; 98(11): 1584, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30699797

RESUMO

Avocado (Persea americana) is an important crop for Chania, Crete, Greece, and is grown on more than 800 ha. In November 2013, 4-year-old trees in a new avocado grove of cv. Hass grafted onto the rootstock 'Bacon,' previously planted in citrus trees, showed symptoms of yellowing, leaf fall, twig and branch dieback and vascular tissue discoloration. Disease incidence was estimated at 2.3% (12 out of 530 trees affected). A fungus was consistently and readily isolated from symptomatic vascular tissue, previously surface-disinfested with 95% ethanol, on acidified potato dextrose agar (APDA). After 7 days, slow-growing colonies were transferred to PDA and the growth rate of the fungus was 2.9 mm/day at 24°C in the dark. Microscopic observations revealed hyaline hyphae with many irregular, dark microsclerotia measuring 40 to 200 × 30 to 75 µm (average 94.5 × 50.3 µm) developing after 21 days of growth. Hyaline, elliptical, single-celled conidia measuring 2.8 to 7.5 × 2.5 to 4.3 µm (average 4.8 × 3.1 µm) developed on verticillate conidiophores. For molecular characterization, Verticillium dahliae specific primer pair ITS1-F/ITS2-R that amplifies the rRNA internal transcribed spacer (ITS) region was used (2). Band of expected size was amplified, sequenced, and deposited in GenBank (Accession No. KJ818294). On the basis of morphological characteristics (3) and a BLAST search with 100% identity to the published ITS sequence of a V. dahliae isolate in GenBank (KC834733.1), the fungus was identified as V. dahliae. Five 1-year-old avocado plants of cv. Hass, grafted onto the rootstock 'Bacon,' were used for pathogenicity tests. Artificial inoculation was performed by making a 5.0 × 3.5 mm hole in the rootstock trunk, injecting approximately 40 µl of a 2.8 × 107 conidia/ml suspension into the vessels (spores were introduced passively), sealing with Vaseline, and covering with adhesive paper tape. Five control plants were mock inoculated with sterilized distilled water. Disease symptoms that appeared 18 days post artificial inoculation were similar to those observed under natural infection conditions. Thirty-five days post artificial inoculation, disease incidence was 80%, whereas the percentage of positive V. dahliae re-isolations from infected tissues was 95% (96.7 and 93.3% from rootstock and graft, respectively). The extent of vascular tissue discoloration from the point of inoculation ranged from 11 to 62 cm, whereas V. dahliae was successfully re-isolated even from the end of the graft (approximately 60 cm above the initial inoculation point), thus confirming Koch's postulates. Neither symptoms nor positive isolations were observed in control plants. The pathogenicity test was repeated twice with similar results. Verticillium wilt of avocado has been observed in several countries including Argentina, Chile, Ecuador, Israel, Mexico, Morocco, Spain, and the United States (1). To the best of our knowledge, this is the first report of Verticillium wilt on avocado in Greece. This disease could potentially be an increasing problem in areas where young avocado trees are established on land previously planted in vegetable crops. References: (1) J. C. Goud and J. A. Hiemstra. Chapter 3 in: A Compendium of Verticillium Wilt in Trees Species, 1998. (2) E. A. Markakis et al. Eur. J. Plant Pathol. 124:603, 2009. (3) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...