Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 161: 213882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710121

RESUMO

Metallic lattice scaffolds are designed to mimic the architecture and mechanical properties of bone tissue and their surface compatibility is of primary importance. This study presents a novel surface modification protocol for metallic lattice scaffolds printed from a superelastic Ti-Zr-Nb alloy. This protocol consists of dynamic chemical etching (DCE) followed by silver nanoparticles (AgNP) decoration. DCE, using an 1HF + 3HNO3 + 12H2O23% based solution, was used to remove partially-fused particles from the surfaces of different as-built lattice structures (rhombic dodecahedron, sheet gyroid, and Voronoi polyhedra). Subsequently, an antibacterial coating was synthesized on the surface of the scaffolds by a controlled (20 min at a fixed volume flowrate of 500 mL/min) pumping of the functionalization solutions (NaBH4 (2 mg/mL) and AgNO3 (1 mg/mL)) through the porous structures. Following these treatments, the scaffolds' surfaces were found to be densely populated with Ag nanoparticles and their agglomerates, and manifested an excellent antibacterial effect (Ag ion release rate of 4-8 ppm) suppressing the growth of both E. coli and B. subtilis bacteria up to 99 %. The scaffold extracts showed no cytotoxicity and did not affect cell proliferation, indicating their safety for subsequent use as implants. A cytocompatibility assessment using MG-63 spheroids demonstrated good attachment, spreading, and active migration of cells on the scaffold surface (over 96 % of living cells), confirming their biotolerance. These findings suggest the promise of this surface modification approach for developing superelastic Ti-Zr-Nb scaffolds with superior antibacterial properties and biocompatibility, making them highly suitable for bone implant applications.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Alicerces Teciduais , Titânio , Zircônio , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Alicerces Teciduais/química , Zircônio/química , Zircônio/farmacologia , Humanos , Nióbio/química , Nióbio/farmacologia , Lasers , Escherichia coli/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Bacillus subtilis/efeitos dos fármacos , Pós , Teste de Materiais , Proliferação de Células/efeitos dos fármacos
2.
J Biomol Struct Dyn ; 22(3): 339-45, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15473707

RESUMO

Prokaryotic DNA methyltransferase M.SssI recognizes and methylates C5 position of the cytosine residue within the CG dinucleotides in DNA. It is an excellent model for studying the mechanism of interaction between CG-specific eukaryotic methyltransferases and DNA. We have built a structural model of M.SssI in complex with the substrate DNA and its analogues as well as the cofactor analogue S-adenosyl-L-homocysteine (AdoHcy) using the previously solved structures of M.HhaI and M.HaeIII as templates. The model was constructed according to the recently developed "FRankenstein's monster" approach. Based on the model, amino acid residues taking part in cofactor binding, target recognition and catalysis were predicted. We also modeled covalent modification of the DNA substrate and studied its influence on protein-DNA interactions.


Assuntos
DNA-Citosina Metilases/química , DNA/química , Nucleosídeo Desaminases/química , 2-Aminopurina/química , Sequência de Aminoácidos , DNA-Citosina Metilases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fenilalanina/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Spiroplasma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...