Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617262

RESUMO

Spatial transcriptomics (ST) technologies represent a significant advance in gene expression studies, aiming to profile the entire transcriptome from a single histological slide. These techniques are designed to overcome the constraints faced by traditional methods such as immunostaining and RNA in situ hybridization, which are capable of analyzing only a few target genes simultaneously. However, the application of ST in histopathological analysis is also limited by several factors, including low resolution, a limited range of genes, scalability issues, high cost, and the need for sophisticated equipment and complex methodologies. Seq-Scope-a recently developed novel technology-repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, thereby overcoming these limitations. Here we provide a detailed step-by-step protocol to implement Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell that allows for the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. In addition to detailing how to prepare a frozen tissue section for both histological imaging and sequencing library preparation, we provide comprehensive instructions and a streamlined computational pipeline to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology.

2.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168419

RESUMO

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

3.
EBioMedicine ; 71: 103559, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34461601

RESUMO

BACKGROUND: The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping "cell-of-origin". Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. METHODS: We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). FINDINGS: From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. INTERPRETATION: Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. FUNDING: National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.


Assuntos
Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Leucemia de Células B/etiologia , Linfoma de Células B/etiologia , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Biomarcadores , Transformação Celular Neoplásica/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia de Células B/diagnóstico , Leucemia de Células B/metabolismo , Linfoma de Células B/diagnóstico , Linfoma de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Oncogenes , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
J Immunol ; 199(3): 1131-1141, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637900

RESUMO

T lineage commitment requires the coordination of key transcription factors (TFs) in multipotent progenitors that transition them away from other lineages and cement T cell identity. Two important TFs for the multipotent progenitors to T lineage transition are RUNX1 and ETS1, which bind cooperatively to composite sites throughout the genome, especially in regulatory elements for genes involved in T lymphopoiesis. Activation of the TCR ß (Tcrb) locus in committed thymocytes is a critical process for continued development of these cells, and is mediated by an enhancer, Eß, which harbors two RUNX-ETS composite sites. An outstanding issue in understanding T cell gene expression programs is whether RUNX1 and ETS1 have independent functions in enhancer activation that can be dissected from cooperative binding. We now show that RUNX1 is sufficient to activate the endogenous mouse Eß element and its neighboring 25 kb region by independently tethering this TF without coincidental ETS1 binding. Moreover, RUNX1 is sufficient for long-range promoter-Eß looping, nucleosome clearance, and robust transcription throughout the Tcrb recombination center, spanning both DßJß clusters. We also find that a RUNX1 domain, termed the negative regulatory domain for DNA binding, can compensate for the loss of ETS1 binding at adjacent sites. Thus, we have defined independent roles for RUNX1 in the activation of a T cell developmental enhancer, as well as its ability to mediate specific changes in chromatin landscapes that accompany long-range induction of recombination center promoters.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Sítios de Ligação/genética , Cromatina/imunologia , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Genoma , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Recombinação Genética , Timócitos/imunologia , Timócitos/metabolismo
5.
Cell Rep ; 18(12): 2918-2931, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329684

RESUMO

Alterations in distal regulatory elements that control gene expression underlie many diseases, including cancer. Epigenomic analyses of normal and diseased cells have produced correlative predictions for connections between dysregulated enhancers and target genes involved in pathogenesis. However, with few exceptions, these predicted cis-regulatory circuits remain untested. Here, we dissect cis-regulatory circuits that lead to overexpression of NEK6, a mitosis-associated kinase, in human B cell lymphoma. We find that only a minor subset of predicted enhancers is required for NEK6 expression. Indeed, an annotated super-enhancer is dispensable for NEK6 overexpression and for maintaining the architecture of a B cell-specific regulatory hub. A CTCF cluster serves as a chromatin and architectural boundary to block communication of the NEK6 regulatory hub with neighboring genes. Our findings emphasize that validation of predicted cis-regulatory circuits and super-enhancers is needed to prioritize transcriptional control elements as therapeutic targets.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Jurkat , Linfoma Folicular/genética , Linfoma Folicular/patologia , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
7.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27264604

RESUMO

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Colo/citologia , Colo/microbiologia , Microbioma Gastrointestinal , Células-Tronco/metabolismo , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Animais , Proliferação de Células , Intestino Delgado/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Moléculas com Motivos Associados a Patógenos/metabolismo , Células-Tronco/citologia , Peixe-Zebra
8.
Cell ; 165(5): 1134-1146, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27156452

RESUMO

Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially their lineage and functional kinships to cytokine-secreting T helper (Th) cell counterparts. Here, we report gene regulatory circuitries for four human ILC-Th counterparts derived from mucosal environments, revealing that each ILC subset diverges as a distinct lineage from Th and circulating natural killer cells but shares circuitry devoted to functional polarization with their Th counterparts. Super-enhancers demarcate cohorts of cell-identity genes in each lineage, uncovering new modes of regulation for signature cytokines, new molecules that likely impart important functions to ILCs, and potential mechanisms for autoimmune disease SNP associations within ILC-Th subsets.


Assuntos
Linfócitos/citologia , Linfócitos/imunologia , Imunidade Adaptativa , Animais , Citocinas/imunologia , Citocinas/metabolismo , Elementos Facilitadores Genéticos , Humanos , Imunidade Inata , Imunidade nas Mucosas , Células Matadoras Naturais , Linfócitos/metabolismo , Camundongos , Tonsila Palatina/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
9.
J Immunol ; 196(11): 4805-13, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183590

RESUMO

It is now clear that recognition of nascent tumors by the immune system is critical for survival of the host against cancer. During cancer immunoediting, the ability of the tumor to escape immune recognition is important for tumor development. The immune system recognizes tumors via the presence of classical Ags and also by conserved innate mechanisms. One of these mechanisms is the NKG2D receptor that recognizes ligands whose expression is induced by cell transformation. In this study, we show that in NKG2D receptor-deficient mice, increasing numbers of B cells begin to express NKG2D ligands as they age. Their absence in wild-type mice suggests that these cells are normally cleared by NKG2D-expressing cells. NKG2D-deficient mice and mice constitutively expressing NKG2D ligands had increased incidence of B cell tumors, confirming that the inability to clear NKG2D ligand-expressing cells was important in tumor suppression and that NKG2D ligand expression is a marker of nascent tumors. Supporting a role for NKG2D ligand expression in controlling the progression of early-stage B cell lymphomas in humans, we found higher expression of a microRNA that inhibits human NKG2D ligand expression in tumor cells from high-grade compared with low-grade follicular lymphoma patients.


Assuntos
Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Progressão da Doença , Humanos , Ligantes , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/deficiência , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética
10.
Trends Genet ; 31(12): 720-731, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26604030

RESUMO

B cell lymphomas (BCLs) are characterized by widespread deregulation of gene expression compared with their normal B cell counterparts. Recent epigenomic studies defined cis-regulatory elements (REs) whose activities are altered in BCL to drive some of these pathogenic expression changes. During transformation, multiple mechanisms are employed to alter RE activities, including perturbations in the function of chromatin modifiers, which can lead to revision of the B cell epigenome. Inherited and somatic variants also alter RE function via disruption of transcription factor (TF) binding. Aberrant expression of noncoding RNAs (ncRNAs) deregulates genes involved in B cell differentiation via direct repression and post-transcriptional targeting. These discoveries have established epigenetic etiologies for B cell transformation that are being exploited in novel therapeutic approaches.


Assuntos
Redes Reguladoras de Genes , Linfoma de Células B/genética , Animais , Epigênese Genética , Humanos , Camundongos
11.
J Immunol ; 195(3): 1262-72, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101321

RESUMO

Considerable cross-talk exists between mechanisms controlling genome architecture and gene expression. AgR loci are excellent models for these processes because they are regulated at both conformational and transcriptional levels to facilitate their assembly by V(D)J recombination. Upon commitment to the double-negative stage of T cell development, Tcrb adopts a compact conformation that promotes long-range recombination between Vß gene segments (Trbvs) and their DßJß targets. Formation of a functional VßDßJß join signals for robust proliferation of double-negative thymocytes and their differentiation into double-positive (DP) cells, where Trbv recombination is squelched (allelic exclusion). DP differentiation also is accompanied by decontraction of Tcrb, which has been thought to separate the entire Trbv cluster from DßJß segments (spatial segregation-based model for allelic exclusion). However, DP cells also repress transcription of unrearranged Trbvs, which may contribute to allelic exclusion. We performed a more detailed study of developmental changes in Tcrb topology and found that only the most distal portion of the Trbv cluster separates from DßJß segments in DP thymocytes, leaving most Trbvs spatially available for rearrangement. Preferential dissociation of distal Trbvs is independent of robust proliferation or changes in transcription, chromatin, or architectural factors, which are coordinately regulated across the entire Trbv cluster. Segregation of distal Trbvs also occurs on alleles harboring a functional VßDßJß join, suggesting that this process is independent of rearrangement status and is DP intrinsic. Our finding that most Trbvs remain associated with DßJß targets in DP cells revises allelic exclusion models from their current conformation-dominant to a transcription-dominant formulation.


Assuntos
Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timócitos/citologia , Recombinação V(D)J/genética , Animais , Sequência de Bases , Diferenciação Celular/imunologia , Proliferação de Células/genética , Ciclina D3/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Proteica , Estrutura Secundária de Proteína , Análise de Sequência de DNA
12.
Immunity ; 42(1): 186-98, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607463

RESUMO

Most B-cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions REs from normal GC B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression was deregulated in FL, targeted commandeered versus decommissioned REs. Our approach revealed two distinct subtypes of low-grade FL, whose pathogenic circuitries resembled GC B or activated B cells. FL-altered enhancers also were enriched for sequence variants, including somatic mutations, which disrupt transcription-factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC B-cell transformation.


Assuntos
Linfócitos B/fisiologia , Redes Reguladoras de Genes , Centro Germinativo/patologia , Linfoma de Células B/genética , Elementos Reguladores de Transcrição/imunologia , Adulto , Idoso , Transformação Celular Neoplásica , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Exp Med ; 212(1): 107-20, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25512470

RESUMO

Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRß antigen receptor locus (Tcrb). Association between distal Vß gene segments and the highly expressed DßJß clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vß array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vß gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.


Assuntos
Cromatina/genética , Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timócitos/metabolismo , Animais , Fator de Ligação a CCCTC , Linhagem da Célula/genética , Células Cultivadas , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Hibridização in Situ Fluorescente/métodos , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Precursoras de Linfócitos B/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timócitos/citologia , Recombinação V(D)J/genética , VDJ Recombinases/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(34): E3206-15, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918392

RESUMO

The primary antigen receptor repertoire is sculpted by the process of V(D)J recombination, which must strike a balance between diversification and favoring gene segments with specialized functions. The precise determinants of how often gene segments are chosen to complete variable region coding exons remain elusive. We quantified Vß use in the preselection Tcrb repertoire and report relative contributions of 13 distinct features that may shape their recombination efficiencies, including transcription, chromatin environment, spatial proximity to their DßJß targets, and predicted quality of recombination signal sequences (RSSs). We show that, in contrast to functional Vß gene segments, all pseudo-Vß segments are sequestered in transcriptionally silent chromatin, which effectively suppresses wasteful recombination. Importantly, computational analyses provide a unifying model, revealing a minimum set of five parameters that are predictive of Vß use, dominated by chromatin modifications associated with transcription, but largely independent of precise spatial proximity to DßJß clusters. This learned model-building strategy may be useful in predicting the relative contributions of epigenetic, spatial, and RSS features in shaping preselection V repertoires at other antigen receptor loci. Ultimately, such models may also predict how designed or naturally occurring alterations of these loci perturb the preselection use of variable gene segments.


Assuntos
Regulação da Expressão Gênica/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/imunologia , Região Variável de Imunoglobulina/genética , Modelos Imunológicos , Recombinação V(D)J/imunologia , Animais , Cromatina/imunologia , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Primers do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Análise de Regressão , Recombinação V(D)J/genética
15.
Epigenetics Chromatin ; 3(1): 5, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20181089

RESUMO

BACKGROUND: Studies indicate that the 19S proteasome contributes to chromatin reorganization, independent of the role the proteasome plays in protein degradation. We have previously shown that components of the 19S proteasome are crucial for regulating inducible histone activation events in mammalian cells. The 19S ATPase Sug1 binds to histone-remodeling enzymes, and in the absence of Sug1, a subset of activating epigenetic modifications including histone H3 acetylation, H3 lysine 4 trimethylation and H3 arginine 17 dimethylation are inhibited at cytokine-inducible major histocompatibilty complex (MHC)-II and class II transactivator (CIITA) promoters, implicating Sug1 in events required to initiate mammalian transcription. RESULTS: Our previous studies indicate that H3 lysine 4 trimethylation at cytokine-inducible MHC-II and CIITA promoters is dependent on proteolytic-independent functions of 19S ATPases. In this report, we show that multiple common subunits of the mixed lineage leukemia (MLL)/complex of proteins associated with Set I (COMPASS) complexes bind to the inducible MHC-II and CIITA promoters; that overexpressing a single common MLL/COMPASS subunit significantly enhances promoter activity and MHC-II HLA-DRA expression; and that these common subunits are important for H3 lysine 4 trimethylation at MHC-II and CIITA promoters. In addition, we show that H3 lysine 27 trimethylation, which is inversely correlated with H3 lysine 4 trimethylation, is significantly elevated in the presence of diminished 19S ATPase Sug1. CONCLUSION: Taken together, these experiments suggest that the 19S proteasome plays a crucial role in the initial reorganization of events enabling the relaxation of the repressive chromatin structure surrounding inducible promoters.

16.
J Mol Biol ; 395(2): 254-69, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19853614

RESUMO

Class II transactivator (CIITA) is the master regulator of the major histocompatibility class II transcription complex (MHC-II) and is critical for initiation of adaptive immune responses. We have previously demonstrated that the 19S proteasome ATPase Sug1 plays a significant role in regulating CIITA activity and MHC-II expression. We now show that an additional component of the 19S complex, the 19S ATPase S6a (S6'/Tat-binding protein 1), is crucial for regulating cytokine-inducible transcription of CIITA. Lack of S6a negatively impacts CIITA activity and CIITA expression. Decreased expression of S6a significantly diminishes the recruitment of transcription factors to the CIITA interferon-gamma-inducible promoter [CIITA promoter IV (pIV)] and significantly decreases CIITApIV histone H3 and histone H4 acetylation, with a preferential loss of acetylation at H3 lysine 18 and H4 lysine 8. In addition, we provide evidence for the involvement of the 19S AAA (ATPases associated with diverse cellular activity) ATPase hexamer as the 19S ATPase S6b binds CIITApIV in an S6a-dependent fashion and has effects similar to S6a on CIITApIV histone acetylation. These analyses demonstrate the importance of 19S ATPases in the assembly of CIITApIV transcription machinery and provide additional insight into the regulatory mechanisms of the 19S proteasome in mammalian transcription.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Sequência de Bases , Primers do DNA/genética , Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Interferon gama/farmacologia , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma , RNA Interferente Pequeno/genética , Proteínas Recombinantes , Fator de Transcrição STAT1/metabolismo , Transativadores/genética , Transcrição Gênica
17.
Biochim Biophys Acta ; 1789(11-12): 691-701, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19660582

RESUMO

Studies indicate that the 19S proteasome functions in the epigenetic regulation of transcription. We have shown that as in yeast, components of the 19S proteasome are crucial for regulating inducible histone acetylation events in mammalian cells. The 19S ATPase Sug1 binds to histone acetyltransferases and to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at mammalian promoters. Research in yeast further indicates that the ortholog of Sug1, Rpt6, is a link between ubiquitination of histone H2B and H3 lysine 4 trimethylation (H3K4me3). To characterize the role that the 19S proteasome plays in regulating additional activating modifications, we examined the methylation and ubiquitination status of histones at inducible mammalian genes. We find that Sug1 is crucial for regulating histone H3K4me3 and H3R17me2 at the cytokine inducible MHC-II and CIITA promoters. In the absence of Sug1, histone H3K4me3 and H3R17me2 are dramatically decreased, but the loss of Sug1 has no significant effect on H3K36me3 or H2BK120ub. Our observation that a subunit of hCompass interacts with additional activating histone modifying enzymes, but fails to bind the CIITA promoter in the absence of Sug1, strongly implicates Sug1 in recruiting enzyme complexes responsible for initiating mammalian transcription.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Interferon gama/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Antígenos HLA-DR/genética , Cadeias alfa de HLA-DR , Células HeLa , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Lisina/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação
18.
Mol Cell Biol ; 28(19): 5837-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18662994

RESUMO

Recent studies have made evident the fact that the 19S regulatory component of the proteasome has functions that extend beyond degradation, particularly in the regulation of transcription. Although 19S ATPases facilitate chromatin remodeling and acetylation events in yeast (Saccharomyces cerevisiae), it is unclear if they play similar roles in mammalian cells. We have recently shown that the 19S ATPase Sug1 positively regulates the transcription of the critical inflammatory gene for major histocompatibility complex class II (MHC-II) by stabilizing enhanceosome assembly at the proximal promoter. We now show that Sug1 is crucial for regulating histone H3 acetylation at the MHC-II proximal promoter. Sug1 binds to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at the proximal promoter, with a preferential loss of acetylation at H3 lysine 18. Sug1 also binds to the MHC-II histone acetyltransferase CREB-binding protein (CBP) and is critical for the recruitment of CBP to the MHC-II proximal promoter. Our current study strongly implicates the 19S ATPase Sug1 in modifying histones to initiate MHC-II transcription and provides novel insights into the role of the proteasome in the regulation of mammalian transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína de Ligação a CREB/metabolismo , Montagem e Desmontagem da Cromatina , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Proteínas com Domínio LIM , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...