Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764756

RESUMO

The changes in the energy sector after the Paris agreement and the establishment of the Green Deal, pressed the governments to embrace new measures to reduce greenhouse gas emissions. Among them, is the replacement of fossil fuels by renewable energy sources or carbon-neutral alternative means, such as green hydrogen. As the European Commission approved green hydrogen as a clean fuel, the interest in investments and dedicated action plans related to its production and storage has significantly increased. Hydrogen storage is feasible in aboveground infrastructures as well as in underground constructions. Proper geological environments for underground hydrogen storage are porous media and rock cavities. Porous media are classified into depleted hydrocarbon reservoirs and aquifers, while rock cavities are subdivided into hard rock caverns, salt caverns, and abandoned mines. Depending on the storage option, various technological requirements are mandatory, influencing the required capital cost. Although the selection of the optimum storage technology is site depending, the techno-economical appraisal of the available underground storage options featured the porous media as the most economically attractive option. Depleted hydrocarbon reservoirs were of high interest as site characterisation and cavern mining are omitted due to pre-existing infrastructure, followed by aquifers, where hydrogen storage requires a much simpler construction. Research on data analytics and machine learning tools will open avenues for consolidated knowledge of geological storage technologies.

2.
Open Res Eur ; 3: 85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645484

RESUMO

Background: It is widely acknowledged that carbon dioxide (CO 2), a greenhouse gas, is largely responsible for climatic changes that can lead to warming or cooling in various places. This disturbs natural processes, creating instability and fragility of natural and social ecosystems. To combat climate change, without compromising technology advancements and maintaining production costs at acceptable levels, carbon capture and storage (CCS) technologies can be deployed to advance a non-disruptive energy transition. Capturing CO 2 from industrial processes such as thermoelectric power stations, refineries, and cement factories and storing it in geological mediums is becoming a mature technology. Part of the Mesohellenic Basin, situated in Greek territory, is proposed as a potential area for CO 2 storage in saline aquifers. This follows work previously done in the StrategyCCUS project, funded by the EU. The work is progressing under the Pilot Strategy, funded by the EU. Methods: The current investigation includes geomechanical and petrophysical methods to characterise sedimentary formations for their potential to hold CO 2 underground. Results: Samples were found to have both low porosity and permeability while the corresponding uniaxial strength for the Tsotyli formation was 22 MPa, for Eptechori 35 MPa and Pentalofo 74 MPa. Conclusions: The samples investigated indicate the potential to act as cap-rocks due to low porosity and permeability, but fluid pressure within the rock should remain within specified limits; otherwise, the rock may easily fracture and result in CO 2 leakage or/and deform to allow the flow of CO 2. Further investigation is needed to identify reservoir rocks as well more sampling to allow for statistically significant results.

3.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679390

RESUMO

Planned decommissioning of coal-fired plants in Europe requires innovative technical and economic strategies to support coal regions on their path towards a climate-resilient future. The repurposing of open pit mines into hybrid pumped hydro power storage (HPHS) of excess energy from the electric grid, and renewable sources will contribute to the EU Green Deal, increase the economic value, stabilize the regional job market and contribute to the EU energy supply security. This study aims to present a preliminary phase of a geospatial workflow used to evaluate land suitability by implementing a multi-criteria decision making (MCDM) technique with an advanced geographic information system (GIS) in the context of an interdisciplinary feasibility study on HPHS in the Kardia lignite open pit mine (Western Macedonia, Greece). The introduced geospatial analysis is based on the utilization of the constraints and ranking criteria within the boundaries of the abandoned mine regarding specific topographic and proximity criteria. The applied criteria were selected from the literature, while for their weights, the experts' judgement was introduced by implementing the analytic hierarchy process (AHP), in the framework of the ATLANTIS research program. According to the results, seven regions were recognized as suitable, with a potential energy storage capacity from 1.09 to 5.16 GWh. Particularly, the present study's results reveal that 9.27% (212,884 m2) of the area had a very low suitability, 15.83% (363,599 m2) had a low suitability, 23.99% (550,998 m2) had a moderate suitability, 24.99% (573,813 m2) had a high suitability, and 25.92% (595,125 m2) had a very high suitability for the construction of the upper reservoir. The proposed semi-automatic geospatial workflow introduces an innovative tool that can be applied to open pit mines globally to identify the optimum design for an HPHS system depending on the existing lower reservoir.


Assuntos
Carvão Mineral , Sistemas de Informação Geográfica , Grécia , Europa (Continente)
4.
J Environ Manage ; 330: 117159, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586366

RESUMO

Various types of plutonic and volcanic rocks and their alteration products from Greece (serpentinite, magnesite and andesite), have been used for sustainable removal of Uranium (U) from the acidic drainage of Kirki mine, as well as for the pH increase of the polluted solutions. In this light, this study aims at the further understanding and improvement of the ecofriendly reuse of sterile, natural raw materials (including those remaining through industrial processing and engineering testing of aggregate rocks), for remediation of acid mine drainage. The selected rocks constitute such residues of sterile materials were used as filters in experimental continuous flow devices in the form of batch-type columns, in order to investigate acidic remediation properties with special focus on U removal. The initial pH of the wastewater was 2.90 and increased after seven (7) days of experimental application and more specifically from the fourth day onwards. Uranium removal became quantitatively significant once pH reached the value of 5.09. The volcanic rocks appeared to be more effective for U removal than the plutonic ones because of microtextural differences. However, optimum U removal was mainly achieved by serpentinite: while the raw materials rich in Mg strongly reacted and remediated the pH of the drainage water waste. Furthermore, the increase of pH values due to the presence of mineral raw materials, provided increased oxidation potential which deactivated the toxic load of metals, particularly U. Consequently, batch-type serpentinite reaction with the tailing fluid caused a drop in U concentration from an initial value of 254 ppb to the one of 8 ppb, which corresponds to 97% of removal. Andesite presented the second best reactant for experimental remediation, especially when it was mixed with magnetically separated mineral fractions. Despite the fact that the proposed methodology is currently at a relatively low Technology Readiness Level (TRL), it carries the potential to become an extremely effective and low-cost alternative to conventional environmental restoration technologies.


Assuntos
Urânio , Águas Residuárias , Silicatos de Magnésio , Minerais , Concentração de Íons de Hidrogênio
5.
Micron ; 158: 103292, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512524

RESUMO

X-ray micro-computed tomography (µCT) was applied upon selected ophiolitic rock samples from various localities of the Vardar ophiolite outcrops in North Greece. Effectiveness of the µCT application was evaluated through this case study by comparing results with other state-of-the-art techniques (e.g., optical microscopy, mineral chemistry microanalyses, XRD and QEMSCAN) to provide suggestive methodologies for optimum characterization, geological modeling, and visualization of ophiolitic rocks. The research outcomes provide an innovative approach for accurate modal composition calculations, crystal structure and mineral distribution in a 3D perspective, by combining µCT results with mineral chemical analyses. The information obtained is critical for investigating ophiolitic rocks to resolve complex petrogenetic and post-magmatic phenomena, to identify fabrics related to deformation, and furthermore results can also be used for applied research purposes. The obtained µCT results suggest that distributions of mineral's grayscale values strongly rely on three key factors: (i) participation of mineral phases with distinct attenuation coefficient and/or density properties, (ii) coexistence of different mafic minerals or mafic with non-mafic phases, (iii) variability in their mineral chemistry. The ability to analyze and visualize the internal mineral constituents of ophiolitic rocks samples, through the combination of µCT and Energy-Dispersive X-ray spectroscopy (EDS), can lead to advanced 3D stereological rock fabric analyses, which is advantageous compared to 2D methodologies. The µCT allowed to perform rock fabric calculations (best-fit ellipsoids and with volume) upon specified grain size distributions to identify and characterize the 3D morphological properties of the participating crystals and their preferable orientation.


Assuntos
Microscopia , Minerais , Minerais/química , Espectrometria por Raios X , Microtomografia por Raio-X/métodos
6.
Environ Sci Pollut Res Int ; 27(3): 2977-2991, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838691

RESUMO

Olive mill wastewater (OMW) is characterized as a high-strength effluent due to the high organic load, low biodegradability, and presence of phytotoxic compounds. Most of the OMW treatment methods proposed, including adsorption, focus mainly on the reduction of chemical oxygen demand and recovery of polyphenols. Adsorption studies aiming at nutrient removal from OMW are very limited. In the present work, Ca(OH)2-treated zeolite (CaT-Z) in a granular form was used for simultaneous recovery of phosphate (PO43-) and potassium (K+) ions from two samples of anaerobically digested OMW. Nutrient adsorption was investigated as a function of contact time, pH and dilution of OMW with deionized water. The lower removal efficiency of phosphorus (P) by CaT-Z was observed at higher dilution ratios consisted of 3.125-6.25% OMW-1 and 5% OMW-2. The maximum P removal was 73.9% in 25% OMW-1 and 85.9% in 10% OMW-2. Potassium removal, as the predominant cation of OMW samples, increased from 17.3 to 46.1% in OMW-1 and from 15.1 to 57.7% in OMW-2 with increasing dilution. The maximum experimental adsorption capacities were 15.8 mg K and 2.14 mg P per gram of CaT-Z. Five sequential treatments of 50% OMW-2 with fresh CaT-Z at each stage ensured a cumulative removal of 87.5% for P and 74.9% for K. Adsorption kinetics were faster for K than for P. The plant-available P was found to be the predominant fraction on the loaded CaT-Z. Electron Probe Micro-analysis confirmed the enhanced content of K and P on the loaded CaT-Z, whereas X-ray mapping revealed the co-distribution of Ca and P. This study demonstrates the potential usage of CaT-Z as an immobilization medium of P and K from anaerobically treated OMW.


Assuntos
Olea , Fosfatos/química , Eliminação de Resíduos Líquidos/métodos , Zeolitas/química , Cálcio , Resíduos Industriais , Azeite de Oliva , Potássio , Águas Residuárias
7.
Arh Hig Rada Toksikol ; 65(4): 365-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25720024

RESUMO

Wood fly ash is an industrial by-product of the combustion of different wood materials and is mostly disposed of as waste on landfills. In our preliminary experiments, wood ash exhibited antibacterial activity against urban wastewater bacteria and we focused on wood fly ash as a potential substrate for wastewater disinfection. The addition of ash at a concentration of 10 g L⁻¹ (1%) caused an instant increase of pH in urban wastewater and landfill leachate. High pH (10.1-12.7) inactivated bacterial populations in the wastewater and the removal of faecal coliforms and intestinal enterococci after 6 h of contact was 100% (below the detection limit; <1 CFU per mL) with the most efficient ash sample (ash from combustion of beech) both in urban wastewater and landfill leachate. Properly chosen wood fly ash, i.e. one that tends to increase the pH to the greatest extent, proved to be a very effective disinfection substrate. Considering that water treated with wood ash has a high pH and needs to be neutralised before discharge, ash would be suitable for disinfection of leachates when smaller volumes are treated.


Assuntos
Álcalis , Desinfecção/métodos , Recuperação e Remediação Ambiental/métodos , Águas Residuárias/microbiologia , Madeira , Cidades , Croácia , Enterobacteriaceae/crescimento & desenvolvimento , Enterococcus faecalis/crescimento & desenvolvimento , Exposição Ambiental , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água
8.
J Hazard Mater ; 183(1-3): 787-92, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20724071

RESUMO

The purpose of the study described in this paper was to determine the removal of Cr (total), Cr (VI), Cu, Ni, Pb, Zn and Cd from wastewater using different particle-size-fractions of highly calcareous and highly siliceous fly ashes (FAs). Three different Hellenic FAs (two calcareous and one siliceous) were tested for their capability of precipitating heavy metals from aqueous solutions. Each FA sample was separated into six different size-fractions with a grain diameter range of: [(0-25) (25-40) (40-90) (90-150) (150-400) and (>400)] µm. The different FA grain-fractions were evaluated in terms of their chemical composition, pH, Loss on Ignition (LOI) and CaO(f) (%). Batch adsorption experiments were then carried out, indicating that the various grain-fractions of the highly siliceous FA were more efficient in precipitating Cr (VI) but less capable of retaining Cd, Cu, Ni, Pb and Zn. On the other hand, the high-Ca fly ashes were proven to be more efficient in uptaking Cd, Cu, Ni, Pb and Zn, but less in hexavalent chromium. This particular tendency was also confirmed in the case of the different particle-size-fractions of same fly ashes. It was actually verified that FAs can be more effective in the field of industrial wastewater-remediation when separated into their size-fractions.


Assuntos
Carbono/química , Metais Pesados/isolamento & purificação , Material Particulado/química , Purificação da Água/métodos , Adsorção , Cinza de Carvão , Recuperação e Remediação Ambiental/métodos , Resíduos Industriais/prevenção & controle , Tamanho da Partícula , Poluentes da Água/isolamento & purificação
9.
J Hazard Mater ; 173(1-3): 581-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19765901

RESUMO

Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, were utilized as raw materials for the synthesis of zeolitic products. The two FAs underwent a hydrothermal activation with 1M NaOH solution. Two different FA/NaOH solution/ratios (50, 100g/L) were applied for each sample and several zeolitic materials were formed. The experimental products were characterized by means of X-ray diffraction (XRD) and energy dispersive X-ray coupled-scanning electron microscope (EDX/SEM), while X-ray fluorescence (XRF) was applied for the determination of their chemical composition. The zeolitic products were also evaluated in terms of their cation exchange capacity (CEC), specific surface area (SSA), specific gravity (SG), particle size distribution (PSD), pH and the range of their micro- and macroporosity. Afterwards the hybrid materials were tested for their ability of adsorbing Cr, Pb, Ni, Cu, Cd and Zn from contaminated liquids. Main parameters for the precipitation of the heavy metals, as it was concluded from the experimental results, are the mineralogical composition of the initial fly ashes, as well as the type and the amount of the produced zeolite and specifically the mechanism by which the metals ions are hold on the substrate.


Assuntos
Carbono/química , Metais Pesados/isolamento & purificação , Material Particulado/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Zeolitas/química , Cinza de Carvão , Concentração de Íons de Hidrogênio , Troca Iônica , Microscopia Eletrônica de Varredura , Porosidade , Gravidade Específica , Termodinâmica
10.
J Hazard Mater ; 169(1-3): 100-7, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19410365

RESUMO

The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO(2) is the dominant oxide in the fly ashes, with CaO, Al(2)O(3) and Fe(2)O(3) also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples.


Assuntos
Carbono/análise , Carvão Mineral/análise , Minerais/análise , Material Particulado/análise , Biomassa , Cinza de Carvão , Óxidos , Projetos Piloto , Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...