Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 37(16): 3465-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381292

RESUMO

We report on the monolithic integration of multimode interference couplers, Bragg gratings, and delay-line interferometers on an electro-optic polymer platform capable of modulation directly at 100 Gb/s. We also report on the hybrid integration of InP active components with the polymer structure using the butt-coupling technique. Combining the passive and the active components, we demonstrate a polymer-based, external cavity laser with 17 nm tuning range and the optical assembly of an integrated 100 Gb/s transmitter, and we reveal the potential of the electro-optic polymer technology to provide the next generation integration platform for complex, ultra-high-speed optical transceivers.

2.
Opt Express ; 19(12): 11479-89, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716380

RESUMO

We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

3.
Opt Express ; 15(16): 9948-53, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19547344

RESUMO

We demonstrate an optical clock recovery circuit that extracts the line rate component on a per packet basis from short data packets at 40Gb/s. The circuit comprises a Fabry-Perot filter followed by a novel power limiting configuration, which in turn consists of a 5m highly nonlinear bismuth oxide fiber in cascade with an optical bandpass filter. Both experimental and simulation-based results are in close agreement and reveal that the proposed circuit acquires the timing information within only a small number of bits, yielding a packet clock for every respective data packet. Moreover, we investigate theoretically the scaling laws for the parameters of the circuit for operation beyond 40 Gb/s and present simulation results showing successful packet clock extraction for 160 Gb/s data packets. Finally, the circuit's potential for operation at 320 Gb/s is discussed, indicating that ultrafast packet clock recovery should be in principle feasible by exploiting the passive structure of the device and the fsec-scale nonlinear response of the optical fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...