Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 98: 140-148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646397

RESUMO

PURPOSE: To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography (CMRA) using a 3D cones trajectory. METHODS: To achieve respiratory-resolved 0.98 mm resolution images in a clinically relevant scan time, we undersample the imaging data with a variable-density 3D cones trajectory. For retrospective motion compensation, translational estimates from 3D image-based navigators (3D iNAVs) are used to bin the imaging data into four phases from end-expiration to end-inspiration. To ensure pseudo-random undersampling within each respiratory phase, we devise a phyllotaxis readout ordering scheme mindful of eddy current artifacts in steady state free precession imaging. Following binning, residual 3D translational motion within each phase is computed using the 3D iNAVs and corrected for in the imaging data. The noise-like aliasing characteristic of the combined phyllotaxis and cones sampling pattern is leveraged in a compressed sensing reconstruction with spatial and temporal regularization to reduce aliasing in each of the respiratory phases. RESULTS: In initial studies of six subjects, respiratory motion compensation using the proposed method yields improved image quality compared to non-respiratory-resolved approaches with no motion correction and with 3D translational correction. Qualitative assessment by two cardiologists and quantitative evaluation with the image edge profile acutance metric indicate the superior sharpness of coronary segments reconstructed with the proposed method (P < 0.01). CONCLUSION: We have demonstrated a new method for free-breathing, high-resolution CMRA based on a variable-density 3D cones trajectory with modified phyllotaxis ordering and respiratory-resolved motion compensation with 3D iNAVs.


Assuntos
Coração , Angiografia por Ressonância Magnética , Humanos , Estudos Retrospectivos , Angiografia por Ressonância Magnética/métodos , Angiografia Coronária/métodos , Reprodutibilidade dos Testes , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Artefatos
2.
Magn Reson Med ; 84(2): 800-812, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32011021

RESUMO

PURPOSE: To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). METHODS: An end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data-consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1 -ESPIRiT. Then, the high-resolution coronary MRA images motion corrected with autofocusing using the l1 -ESPIRiT and DL model-based 3D iNAVs are assessed for differences. RESULTS: 3D iNAVs reconstructed using the DL model-based approach and conventional l1 -ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1 -ESPIRiT (20× and 3× speed increases, respectively). CONCLUSIONS: We have developed a deep neural network architecture to reconstruct undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.


Assuntos
Aprendizado Profundo , Angiografia por Ressonância Magnética , Angiografia Coronária , Coração , Humanos , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...