Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15105, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956211

RESUMO

To improve the efficacy of organic solar cells (OSCs), novel small acceptor molecules (CTD1-CTD7) were designed by modification at the terminal acceptors of reference compound CTR. The optoelectronic properties of the investigated compounds (CTD1-CTD7) were accomplished by employing density functional theory (DFT) in combination with time-dependent density functional theory (TD-DFT). The M06 functional along with a 6-311G(d,p) basis set was utilized for calculating various parameters such as: frontier molecular orbitals (FMO), absorption maxima (λmax), binding energy (Eb), transition density matrix (TDM), density of states (DOS), and open circuit voltage (Voc) of entitled chromophores. A red shift in the absorption spectra of all designed chromophores (CTD1-CTD7) was observed as compared to CTR, accompanied by low excitation energy. Particularly, CTD4 was characterized by the highest λmax value of 685.791 nm and the lowest transition energy value of 1.801 eV which might be ascribed to the robust electron-withdrawing end-capped acceptor group. The observed reduced binding energy (Eb) was linked to an elevated rate of exciton dissociation and substantial charge transfer from central core in HOMO towards terminal acceptors in LUMO. These results were further supported by the outcomes from TDM and DOS analyses. Among all entitled chromophores, CTD4 exhibited bathochromic shift (685.791 nm), minimum HOMO/LUMO band gap of 2.347 eV with greater CT. Thus, it can be concluded that by employing molecular engineering with efficient acceptor moieties, the efficiency of photovoltaic materials could be improved.

2.
ACS Omega ; 9(3): 3596-3608, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284097

RESUMO

Organic-based nonlinear optical (NLO) materials may be used in many optical-electronic systems and other next-generation defense technologies. With the importance of NLO materials, a series of push-pull architecture (D-π-A) derivatives (DTMD2-DTMD6) were devised from DTMR1 through structural alteration of different efficient donor heterocyclic groups. Density functional theory-based computations were executed at the MPW1PW91/6-31G(d,p) level to explore the NLO behavior of the derivatives. To investigate the optoelectronic behavior of the said compounds, various analyses like the frontier molecular orbital (FMO), global reactivity parameters, density of state (DOS), absorption spectra (UV-vis), natural bond orbital, and transition density matrix (TDM) were performed. The derivatives have a smaller band gap (2.156-1.492 eV) and a larger bathochromic shift (λmax = 692.838-969.605 nm) as compared to the reference chromophore (ΔE = 2.306 eV and λmax = 677.949 nm). FMO analysis revealed substantial charge conduction out of the donor toward the acceptor via a spacer that was also shown by TDM and DOS analyses. All derivatives showed promising NLO results, with the maximum amplitude of linear polarizability ⟨α⟩ and first (ßtotal) and second (γtotal) hyperpolarizabilities over their reference chromophore. DTMD2 contained the highest ßtotal (7.220 × 10-27 esu) and γtotal (1.720 × 10-31 esu) values corresponding with the reduced band gap (1.492 eV), representing potential futures for a large NLO amplitude. This structural modification through the use of various donors has played a significant part in achieving promising NLO behavior in the modified compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...