Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathophysiology ; 18(2): 103-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20303242

RESUMO

Retinoic acid and bone morphogenetic protein (BMP4) are endogenous factors indispensable for the physiological development of vertebrates. The proximate aim of the present study was to investigate whether the natural compound citral (a retinoic acid synthesis inhibitor) and a monoclonal, anti-BMP4 antibody, administered to pregnant mice affect in the fetuses cranial osteogenesis and odontoblast differentiation. The present investigation was motivated by the fact that, retinoic acid inhibitors and BMP4 neutralizers may frequently contact human tissues (both intentional and unintentional, and/or unconsciously) inducing unanticipated effects. Our ultimate goal is the prevention of side effects and, future clinical implementation of the results. To this end, pregnant, white mice (balb-c Mus musculus) were intra-abdominally injected with either citral or anti-BMP4 antibody at the 9th gestational day. Newborns were processed within 5h, postnatal. Results were evaluated (a) macroscopically, (b) stereoscopically, following histochemical double staining of cartilage and osseous tissues and, (c) microscopically after (c(1)) histological staining of paraffin sections, and, (c(2)) immunohistochemical detection of apoptosis. Data indicate that in vivo administration of citral (biomimicking hypovitaminosis A) caused restriction/retardation of cranial chondrogenesis and osteogenesis. Apoptosis was not detected in teeth tissues. In vivo administration of anti-BMP4 antibody resulted in a transitory interference with the normal course of odontoblast differentiation and the production of pre-dentin, whereas, delay in the ossification also included the alveoli. Animals inspected in adulthood displayed a fairly normal phenotype. It is concluded that those two substances, under their concentrations experienced, are quite safe for the public.

2.
Int J Biol Sci ; 5(3): 226-43, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19266065

RESUMO

The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.


Assuntos
Evolução Biológica , Odontogênese , Regeneração , Dente/fisiologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Proliferação de Células , Epitélio/fisiologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Humanos , Células-Tronco Mesenquimais , Boca/fisiologia , Mutação , Odontogênese/genética , Fenótipo , Dente/anatomia & histologia , Dente/patologia , Doenças Dentárias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...