Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(5): C1520-C1542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557354

RESUMO

Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.


Assuntos
Caquexia , Técnicas de Cocultura , Neoplasias do Colo , Metabolismo Energético , Glicólise , Fibras Musculares Esqueléticas , Fibras Musculares Esqueléticas/metabolismo , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Caquexia/metabolismo , Caquexia/patologia , Biossíntese de Proteínas , Humanos , Transdução de Sinais , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/biossíntese
2.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513062

RESUMO

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


Assuntos
Treinamento Intervalado de Alta Intensidade , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Animais , Camundongos , Lactatos , Camundongos Endogâmicos ICR , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Piruvatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo
3.
Sci Rep ; 14(1): 5848, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462654

RESUMO

Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.


Assuntos
Tétano , Ratos , Animais , Ratos Sprague-Dawley , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Estimulação Elétrica , Denervação , Eletrodos
4.
J Physiol ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173183

RESUMO

Both ageing and exercise training affect the neuromuscular junction (NMJ) structure. Morphological alterations in the NMJ have been considered to influence neuromuscular transmission and myofibre properties, but the direct link between the morphology and function has yet to be established. We measured the neuromuscular transmission, myofibre composition and NMJ structure of 5-month-old (young) and 24-month-old untrained (aged control) and trained (aged trained) mice. Aged trained mice were subjected to 2 months of endurance training before the measurement. Neuromuscular transmission was evaluated in vivo as the ratio of ankle plantar flexion torque evoked by the sciatic nerve stimulation to that by direct muscle stimulation. The torque ratio was significantly lower in aged mice than in young and aged trained mice at high-frequency stimulations, showing a significant positive correlation with voluntary grip strength. The degree of pre- to post-synaptic overlap of the NMJ was also significantly lower in aged mice and positively correlated with the torque ratio. We also found that the proportion of fast-twitch fibres in the soleus muscle decreased with age, and that age-related denervation occurred preferentially in fast-twitch fibres. Age-related denervation and a shift in myofibre composition were partially prevented by endurance training. These results suggest that age-related deterioration of the NMJ structure impairs neuromuscular transmission and alters myofibre composition, but these alterations can be prevented by structural amelioration of NMJ with endurance training. Our findings highlight the importance of the NMJ as a major determinant of age-related deterioration of skeletal muscles and the clinical significance of endurance training as a countermeasure. KEY POINTS: The neuromuscular junction (NMJ) plays an essential role in neuromuscular transmission and the maintenance of myofibre properties. We show that neuromuscular transmission is impaired with ageing but recovered by endurance training, which contributes to alterations in voluntary strength. Neuromuscular transmission is associated with the degree of pre- to post-synaptic overlap of the NMJ. Age-related denervation of fast-twitch fibres and a shift in myofibre composition toward a slower phenotype are partially prevented by endurance training. Our study provides substantial evidence that age-related and exercise-induced alterations in neuromuscular transmission and myofibre properties are associated with morphological changes in the NMJ.

5.
Exp Physiol ; 108(10): 1295-1307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658608

RESUMO

Previous studies have demonstrated the beneficial effects of apple polyphenol (AP) intake on muscle endurance. Since mitochondria are critical for muscle endurance, we investigated mitochondrial enzyme activity, biogenesis, degradation and protein quality control. Twenty-four Wistar rats were randomly fed a 5% AP diet (5% AP group, n = 8), a 0.5% AP diet (0.5% AP group, n = 8), or a control diet (control group, n = 8). After a 4-week feeding period, the expression level of peroxisome proliferator-activated receptor γ coactivator-1α, a mitochondrial biosynthetic factor, did not increase, whereas that of transcription factor EB, another regulator of mitochondrial synthesis, significantly increased. Moreover, the mitochondrial count did not differ significantly between the groups. In contrast, mitophagy-related protein levels were significantly increased. The enzymatic activities of mitochondrial respiratory chain complexes II, III and IV were significantly higher in the AP intake group than in the control group. We conclude that AP feeding increases the activity of respiratory chain complex enzymes in rat skeletal muscles. Moreover, mitochondrial biosynthesis and degradation may have increased in AP-treated rats. NEW FINDINGS: What is the central question of this study? Does the administration of apple polyphenols (AP) affect mitochondrial respiratory chain complex enzyme activity, biogenesis, degradation and protein quality control in rat skeletal muscles? What is the main finding and its importance? AP feeding increases respiratory chain complex enzyme activity in rat skeletal muscle. Moreover, AP administration increases transcription factor EB activation, and mitophagy may be enhanced to promote degradation of dysfunctional mitochondria, but mitochondrial protein quality control was not affected.


Assuntos
Mitofagia , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/fisiologia , Transporte de Elétrons , Ratos Wistar , Fatores de Transcrição/metabolismo , Polifenóis/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
6.
J Appl Physiol (1985) ; 135(3): 527-533, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471217

RESUMO

Individual differences in recovery of muscle strength after eccentric exercise may be influenced by sex and genotype. A candidate genetic polymorphism associated with response during muscle recovery is the MMP3 gene rs522616 polymorphism, encoding matrix metalloproteinase (MMP-3). Here, we investigated the effect of the MMP3 gene rs522616 polymorphism and sex on recovery of muscle strength after eccentric exercise. A total of 95 healthy subjects (50 men and 45 women) performed five sets of six maximal eccentric elbow flexion exercises. Maximal voluntary contraction (MVC) torque, range of motion (ROM), and muscle soreness, as well as blood parameters [creatine kinase (CK) and interleukin-6 (IL-6)], were assessed immediately before and after and 1, 2, 3, and 5 days after eccentric exercise. No significant time × group interaction in MVC torque after exercise was observed between groups in both sexes. Furthermore, sex differences were identified in the area under the curves (AUC) of CK and IL-6, both of which were higher in men than those in women. A significant genotype-sex interaction was identified in the recovery of MVC, calculated by subtracting the MVC immediately after exercise from the MVC on day 5 after eccentric exercise. The G allele showed a significantly lower recovery of MVC than the AA genotype in men. However, no significant differences were observed in women. This study demonstrated the interaction between the MMP3 rs522616 polymorphism and sex in recovery of muscle strength after eccentric exercise.NEW & NOTEWORTHY Sex differences were identified in the AUC of creatin kinase (CK) and interleukin 6 (IL-6) after eccentric exercise, both of which were greater in men. A genotype-sex interaction was identified in recovery of maximal voluntary contraction (MVC). The G allele showed a significantly lower recovery of MVC than AA genotype in men. To our knowledge, this is the first study to report the interaction between MMP3 gene rs522616 polymorphism and sex difference on recovery of muscle strength after eccentric exercise.


Assuntos
Interleucina-6 , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Interleucina-6/genética , Metaloproteinase 3 da Matriz/genética , Contração Isométrica/fisiologia , Mialgia , Força Muscular/genética , Polimorfismo Genético , Torque , Contração Muscular
7.
Sci Rep ; 12(1): 21275, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481829

RESUMO

Belt electrode skeletal muscle electrical stimulation (B-SES) can simultaneously contract multiple muscle groups. Although the beneficial effects of B-SES in clinical situations have been elucidated, its molecular mechanism remains unknown. In this study, we developed a novel rodent B-SES ankle stimulation system to test whether low-frequency stimulation prevents denervation-induced muscle atrophy. Electrical stimulations (7‒8 Hz, 30 min) with ankle belt electrodes were applied to Sprague-Dawley rats daily for one week. All animals were assigned to the control (CONT), denervation-induced atrophy (DEN), and DEN + electrical stimulation (ES) groups. The tibialis anterior (TA) and gastrocnemius (GAS) muscles were used to examine the effect of ES treatment. After seven daily sessions of continuous stimulation, muscle wet weight (n = 8-11), and muscle fiber cross-sectional area (CSA, n = 4-6) of TA and GAS muscles were lower in DEN and DEN + ES than in CON. However, it was significantly higher in DEN than DEN + ES, showing that ES partially prevented muscle atrophy. PGC-1α, COX-IV, and citrate synthase activities (n = 6) were significantly higher in DEN + ES than in DEN. The mRNA levels of muscle proteolytic molecules, Atrogin-1 and Murf1, were significantly higher in DEN than in CONT, while B-SES significantly suppressed their expression (p < 0.05). In conclusion, low-frequency electrical stimulation of the bilateral ankles using belt electrodes (but not the pad electrodes) is effective in preventing denervation-induced atrophy in multiple muscles, which has not been observed with pad electrodes. Maintaining the mitochondrial quantity and enzyme activity by low-frequency electrical stimulation is key to suppressing muscle protein degradation.


Assuntos
Músculo Esquelético , Animais , Ratos , Estimulação Elétrica , Atrofia Muscular/prevenção & controle , Ratos Sprague-Dawley
8.
J UOEH ; 44(4): 323-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36464306

RESUMO

We aimed to clarify the effect of aging on trabecular bone volume and trabecular bone microstructure in a rat model of Duchenne muscular dystrophy (DMD). Six rats each of wild type (WT) and DMD model at 15 weeks of age, and 4 rats each at 30 weeks of age, were analyzed by dual energy X-ray absorptiometry and by micro-CT for analysis of trabecular and cortical bone of the femur. Bone mineral density was significantly lower in the DMD group than in the WT group at both 15 and 30 weeks of age. Micro-CT showed that trabecular bone volume and number were not significantly different between the two groups at 15 weeks, but at 30 weeks both were significantly lower in the DMD group than in the WT group. Connectivity density and structure model index were not significantly different between the two groups at 15 weeks, but at 30 weeks they differed significantly. No significant differences between the WT and DMD groups in cortical thickness and cortical area were evident at both 15 and 30 weeks. In conclusion, trabecular bone volume is significantly reduced, with deteriorated microstructure, with aging in a rat model of DMD.


Assuntos
Distrofia Muscular de Duchenne , Ratos , Animais , Distrofia Muscular de Duchenne/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Envelhecimento
9.
J Appl Physiol (1985) ; 133(4): 822-833, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007895

RESUMO

Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU + pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU + pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU + pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. In addition, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.NEW & NOTEWORTHY Muscle inactivity reduces ribosome synthesis and content during atrophy. Whether percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction rescues the ribosome synthesis and content during muscle unloading is unclear. Using a mouse hindlimb-unloading model with pelvic suspension, we provide evidence that daily pEMS-induced muscle contraction during hindlimb unloading rescues the reduction in the expression of some ribosome synthesis-related proteins and ribosome content in the gastrocnemius muscle.


Assuntos
Elevação dos Membros Posteriores , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Estimulação Elétrica , Membro Posterior/metabolismo , Elevação dos Membros Posteriores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Ribossomos/metabolismo
10.
Appl Physiol Nutr Metab ; 47(7): 775-786, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439425

RESUMO

Aldehyde dehydrogenase (ALDH) is an enzyme that detoxifies aldehydes and is primarily involved in alcohol metabolism. Recently, we have shown that ALDH also plays an important role in skeletal muscle homeostasis. To better understand the role of ALDH in skeletal muscle, it is necessary to clarify the adaptability of ALDH. In this study, we examined the effects of endurance training, compensatory hypertrophy by synergist ablation (SA), and denervation-induced atrophy on gene expression and protein levels of selected ALDH isoforms in skeletal muscle. Ten-week-old C57BL/6J mice were subjected to each intervention, and the plantaris muscle was collected. Gene expression levels of Aldh1a1 were decreased by SA and denervation, but ALDH1A1 protein levels were not affected. Protein levels of ALDH1B1 increased after chronic endurance training, SA, and denervation interventions. However, the increase in Aldh1b1 gene expression was observed only after SA. The gene expression of Aldh2 was decreased after SA, but ALDH2 protein levels remained unchanged. Denervation increased both the Aldh2 gene and ALDH2 protein levels. Taken together, each isoform of ALDH undergoes unique quantitative adaptations in skeletal muscle under different conditions.


Assuntos
Aldeído Desidrogenase , Músculo Esquelético , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R511-R525, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318866

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) detoxifies acetaldehyde produced from ethanol. A missense single nucleotide polymorphism (SNP) rs671 in ALDH2 exhibits a dominant-negative form of the ALDH2 protein. Nearly 40% of people in East Asia carry an inactive ALDH2*2 mutation. Previous studies reported that ALDH2*2 is associated with increased risk of several diseases. In this study, we examined the effect of ALDH2 deficiency on age-related muscle atrophy and its underlying mechanisms. We found that ALDH2 deficiency promotes age-related loss of muscle fiber cross-sectional areas, especially in oxidative fibers. Furthermore, ALDH2 deficiency exacerbated age-related accumulation of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress in the gastrocnemius muscle. Similarly, mitochondrial reactive oxygen species (ROS) production increased in aged ALDH2-knockout mice, indicating that ALDH2 deficiency induced mitochondrial dysfunction. In summary, ALDH2 deficiency promotes age-related muscle loss, especially in oxidative fibers, which may be associated with an increased accumulation of oxidative stress via mitochondrial dysfunction.


Assuntos
Músculo Esquelético , Atrofia Muscular , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Physiol Rep ; 9(17): e15014, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523264

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS-CoV-2 infection and severe forms of COVID-19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected to treadmill running (17-25 m/min, 60-90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN (host protease that promotes binding of SARS-CoV-2 to host receptors), and Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin-1 levels in liver (-39.7%), trachea (-41.2%), and ileum (-39.7%), and TMPRSS2 in lung (-11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-dependent manner.


Assuntos
COVID-19/virologia , Condicionamento Físico Animal , Resistência Física , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/enzimologia , Furina/metabolismo , Interações Hospedeiro-Patógeno , Masculino , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Corrida , Serina Endopeptidases/metabolismo
13.
Exp Physiol ; 106(9): 1950-1960, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197668

RESUMO

NEW FINDINGS: What is the central question of this study? Is muscle protein synthesis (MPS) additionally activated following exercise when ribosomal capacity is increased after repeated bouts of resistance exercise (RE)? What is the main finding and its importance? Skeletal muscles with increased ribosome content through repeated RE bouts showed sufficient activation of MPS with lower mechanistic target of rapamycin complex 1 signalling. Thus, repeated bouts of RE possibly change the translational capacity and efficiency to optimize translation activation following RE. ABSTRACT: Resistance exercise (RE) activates ribosome biogenesis and increases ribosome content in skeletal muscles. However, it is unclear whether the increase in ribosome content subsequently causes an increase in RE-induced activation of muscle protein synthesis (MPS). Thus, this study aimed to investigate the relationship between ribosome content and MPS after exercise using a rat RE model. Male Sprague-Dawley rats were categorized into three groups (n = 6 for each group): sedentary (SED) and RE trained with one bout (1B) or three bouts (3B). The RE stimulus was applied to the right gastrocnemius muscle by transcutaneous electrical stimulation under isoflurane anaesthesia. The 3B group underwent stimulation every other day. Our results revealed that 6 h after the last bout of RE, muscles in the 3B group showed an increase in total RNA and 18S+28S rRNA content per muscle weight compared with the SED and 1B groups. In both the 1B and 3B groups, MPS, estimated by puromycin incorporation in proteins, was higher than that in the SED group 6 h after exercise; however, no significant difference was observed between the 1B and 3B groups. In the 1B and 3B groups, phosphorylated p70S6K at Thr-389 increased, indicating mechanistic target of rapamycin complex 1 (mTORC1) activity. p70S6K phosphorylation level was lower in the 3B group than in the 1B group. Finally, protein synthesis per ribosome (indicator of translation efficiency) was lower in the 3B group than in the 1B group. Thus, three bouts of RE changed the ribosome content and mTORC1 activation, but not the degree of RE-induced global MPS activation.


Assuntos
Condicionamento Físico Animal , Treinamento Resistido , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo
14.
Physiol Rep ; 9(9): e14842, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991444

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in muscle protein synthesis and repeated bouts of resistance exercise (RE) blunt mTORC1 activation. However, the changes in the proteolytic signaling when recurrent RE bouts attenuate mTORC1 activation are unclear. Using a RE model of electrically stimulated rat skeletal muscle, this study aimed to clarify the effect of repeated RE bouts on acute proteolytic signaling, particularly the calpain, autophagy-lysosome, and ubiquitin-proteasome pathway. p70S6K and rpS6 phosphorylation, indicators of mTORC1 activity, were attenuated by repeated RE bouts. Calpain 3 protein was decreased at 6 h post-RE in all exercised groups regardless of the bout number. Microtubule-associated protein 1 light chain 3 beta-II, an indicator of autophagosome formation, was increased at 3 h and repeated RE bouts increased at 6 h, post-RE. Ubiquitinated proteins were increased following RE, but these increases were independent of the number of RE bouts. These results suggest that the magnitude of autophagosome formation was increased following RE when mTORC1 activity was attenuated with repeated bouts of RE.


Assuntos
Contração Muscular , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Proteólise , Transdução de Sinais , Animais , Autofagossomos/metabolismo , Calpaína/metabolismo , Estimulação Elétrica , Isoenzimas/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Ubiquitinação
15.
J Physiol Sci ; 70(1): 54, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148163

RESUMO

Insufficient duration of recovery between resistance exercise bouts reduces the effects of exercise training, but the influence on muscle anabolic responses is not fully understood. Here, we investigated the changes in the distribution of eukaryotic initiation factor (eIF) 4E, a key regulator of translation initiation, and related factors in mouse skeletal muscle after three successive bouts of resistance exercise with three durations of recovery periods (72 h: conventional, 24 h: shorter, and 8 h: excessively shorter). Bouts of resistance exercise dissociated eIF4E from eIF4E binding protein 1, with the magnitude increasing with shorter recovery. Whereas bouts of resistance exercise with 72 h recovery increased the association of eIF4E and eIF4G, those with shorter recovery did not. Similar results were observed in muscle protein synthesis. These results suggest that insufficient recovery inhibited the association of eIF4E and eIF4G, which might cause attenuation of protein synthesis activation after bouts of resistance exercise.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Condicionamento Físico Animal , Treinamento Resistido , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Recuperação de Função Fisiológica
16.
Am J Physiol Cell Physiol ; 319(6): C1029-C1044, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936700

RESUMO

The contraction of myotubes using electrical pulse stimulation is a research tool used to mimic muscle contractile activity and exercise in rodents and humans. Most protocols employed in previous work used low-frequency twitch contractions. However, high-frequency tetanus contractions that are more physiologically relevant to muscle contractions in vivo are poorly characterized. In this report, the similarities and differences in acute responses and chronic adaptations with different contractile modes using twitches (2 Hz, continuous, 3 h) and tetanus (66 Hz, on: 5 s/off: 5 s, 3 h) were investigated. RNA sequencing-based transcriptome analysis and subsequent bioinformatics analysis suggest that tetanus may promote bioenergetic remodeling rather than twitch. Based on in silico analyses, metabolic remodeling after three contractile sessions of twitch and tetanus were investigated. Although twitch and tetanus had no significant effect on glycolysis, both types of contraction upregulated glucose oxidation capacity. Both twitch and tetanus qualitatively caused mitochondrial adaptations (increased content, respiratory chain enzyme activity, and respiratory function). The magnitude of adaptation was much greater under tetanus conditions. Our findings indicate that the contraction of myotubes by tetanus may be a useful experimental model, especially in the study of metabolic adaptations in C2C12 myotubes.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Estimulação Elétrica , Perfilação da Expressão Gênica , Glucose/metabolismo , Glicogênio/metabolismo , Glicólise/fisiologia , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Condicionamento Físico Animal/fisiologia , Período Refratário Eletrofisiológico/fisiologia , Transcriptoma/genética
17.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R677-R690, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32048867

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) is an enzyme involved in redox homeostasis as well as the detoxification process in alcohol metabolism. Nearly 8% of the world's population have an inactivating mutation in the ALDH2 gene. However, the expression patterns and specific functions of ALDH2 in skeletal muscles are still unclear. Herein, we report that ALDH2 is expressed in skeletal muscle and is localized to the mitochondrial fraction. Oxidative muscles had a higher amount of ALDH2 protein than glycolytic muscles. We next comprehensively investigated whether ALDH2 knockout in mice induces mitochondrial adaptations in gastrocnemius muscle (for example, content, enzymatic activity, respiratory function, supercomplex formation, and functional networking). We found that ALDH2 deficiency resulted in partial mitochondrial dysfunction in gastrocnemius muscle because it increased mitochondrial reactive oxygen species (ROS) emission (2',7'-dichlorofluorescein and MitoSOX oxidation rate during respiration) and the frequency of regional mitochondrial depolarization. Moreover, we determined whether ALDH2 deficiency and the related mitochondrial dysfunction trigger mitochondrial stress and quality control responses in gastrocnemius muscle (for example, mitophagy markers, dynamics, and the unfolded protein response). We found that ALDH2 deficiency upregulated the mitochondrial serine protease Omi/HtrA2 (a marker of the activation of a branch of the mitochondrial unfolded protein response). In summary, ALDH2 deficiency leads to greater mitochondrial ROS production, but homeostasis can be maintained via an appropriate stress response.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Genótipo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Regulação da Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio
18.
J Nutr Biochem ; 77: 108299, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841959

RESUMO

We and others have shown that apple polyphenols decrease adipose tissue mass. To better understand the underlying mechanisms and to expand clinical applicability, we herein examine whether apple polyphenols induce adipose thermogenic adaptations (browning) and prevent diet-induced obesity and related insulin resistance. In mice fed a standard diet, daily apple polyphenol consumption induced thermogenic adaptations in inguinal white adipose tissue (iWAT), based on increases in the expression of brown/beige adipocyte selective genes (Ucp1, Cidea, Tbx1, Cd137) and protein content of uncoupling protein 1 and mitochondrial oxidative phosphorylation enzymes. Among the upstream regulatory factors of browning, fibroblast growth factor 21 (FGF21) and peroxisome proliferator-activated receptor gamma coactivator 1 α (PGC-1α) levels were concomitantly up-regulated by apple polyphenols. In the primary cell culture experiment, the results did not support a direct action of apple polyphenols on beige adipogenesis. Instead, apple polyphenols increased tyrosine hydroxylase (a rate-limiting enzyme of catecholamine synthesis) in iWAT, which activates the adipocyte thermogenic program possibly via intratissue cellular communications. In high-fat fed mice, apple polyphenols induced beige adipocyte development in iWAT, reduced fat accumulation, and increased glucose disposal rates in the glucose and insulin tolerance tests. Taken together, dietary administration of apple polyphenols induced beige adipocyte development in iWAT possibly via activation/induction of the peripheral catecholamine synthesis-FGF21-PGC-1α cascade. Results from diet-induced obese mice indicate that apple polyphenols have therapeutic potential for obesity and related metabolic disorders.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Resistência à Insulina , Malus/química , Polifenóis/farmacologia , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Animais , Transporte Biológico , Catecolaminas/metabolismo , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Teste de Tolerância a Glucose , Inflamação , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Termogênese
19.
Scand J Med Sci Sports ; 30(3): 462-471, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31663641

RESUMO

BACKGROUND: Eccentric contractions (ECCs) cause muscle damage. In addition, we showed that ECCs induce nerve dysfunction and damage with rats and human. PURPOSE: We aimed to evaluate motor nerve conduction velocity (MCV) for flexor pollicis brevis muscle (FPBM) after ECCs. METHODS: Twelve men (years, 19.8 ± 1.7 years; height, 172.4 ± 7.0 cm; weight, 64.0 ± 8.6 kg) performed maximal 100 ECCs on their FPBM of non-dominant hands with torque dynamometer. The dominant hands were control (CON). Maximal voluntary contraction (MVC), range of motion (ROM), DOMS, and MCV were assessed before, immediately post, and 1, 2, and 5 days after ECCs. MCV was calculated as the distance by stimulation divided by the latencies of the waveforms generated. Values were statistically analyzed by two-way ANOVA, and the significance level was set at P < .05. RESULTS: Decreases in MVC immediately (-32.9%) to 5 days after ECCs were significantly greater (P < .05) than for the CON group. ROM showed a significant decrease immediately (-21.6%) after ECCs compared with before ECCs and CON group (P < .05). DOMS after ECCs increased at 1 and 2 days (5.0 cm) after ECCs compared with before ECCs and CON (P < .05). Also, MCV after ECCs delayed significantly from immediately (-36.4%), 1, 2, and 5 days after ECCs compared with CON (P < .05), while no significant change in M-wave amplitude was observed over time for both ECCs and CON. CONCLUSION: The present study showed that ECCs of the FPBM cause a significant delay in MCV of median nerve.


Assuntos
Neurônios Motores/patologia , Contração Muscular , Músculo Esquelético/fisiopatologia , Condução Nervosa , Adolescente , Humanos , Masculino , Dinamômetro de Força Muscular , Mialgia , Amplitude de Movimento Articular , Torque , Adulto Jovem
20.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R649-R661, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433681

RESUMO

Mechanical unloading impairs cytosolic calcium (Ca2+) homeostasis in skeletal muscles. In this study, we investigated whether sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) itself or one of the regulators of the Ca2+ SERCA pump, sarcolipin (SLN), is altered to deregulate Ca2+ homeostasis in cast immobilized, atrophied muscles. Hindlimb muscles of 8-wk-old male C57BL/6J mice were subjected to bilateral cast immobilization for 2 wk. Two-week-cast immobilization induced both body weight and skeletal muscle loss. Highly phosphorylated Ca2+/calmodulin-dependent protein kinase II in the atrophied muscles suggested that cytosolic Ca2+ concentration was elevated. Extremely high expression levels of SLN mRNA and protein were observed in the atrophied muscles. Upregulation of SLN at the transcriptional level was supported by low RCAN1 expression, which is a negative regulator of SLN. We treated C2C12 cells with dexamethasone to mimic muscle atrophy in vitro and showed a direct relationship between high SLN mRNA expression and low Ca2+ uptake by sarcoplasmic reticulum. Since SLN reportedly plays a role in nonshivering thermogenesis, we performed a cold tolerance test of the whole body. As a result, we found that mice with cast immobilization showed high cold tolerance, suggesting that cast immobilization promoted whole body thermogenesis. Although the activity level was decreased during cast immobilization without change in food intake, adipose tissue weights also decreased significantly after cast immobilization. Concomitantly, we conclude that cast immobilization of hindlimb increased thermogenesis in C57Bl/6J mice, probably via high expression of SLN.


Assuntos
Membro Posterior/metabolismo , Extremidade Inferior/fisiopatologia , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogênese/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Atrofia Muscular/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...