Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 41(4): 041915, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24694146

RESUMO

PURPOSE: To introduce and validate a kilovoltage (kV) x-ray source model and characterization method to compute absorbed dose accrued from kV x-rays. METHODS: The authors propose a simplified virtual point source model and characterization method for a kV x-ray source. The source is modeled by: (1) characterizing the spatial spectral and fluence distributions of the photons at a plane at the isocenter, and (2) creating a virtual point source from which photons are generated to yield the derived spatial spectral and fluence distribution at isocenter of an imaging system. The spatial photon distribution is determined by in-air relative dose measurements along the transverse (x) and radial (y) directions. The spectrum is characterized using transverse axis half-value layer measurements and the nominal peak potential (kVp). This source modeling approach is used to characterize a Varian(®) on-board-imager (OBI(®)) for four default cone-beam CT beam qualities: beams using a half bowtie filter (HBT) with 110 and 125 kVp, and a full bowtie filter (FBT) with 100 and 125 kVp. The source model and characterization method was validated by comparing dose computed by the authors' inhouse software (kVDoseCalc) to relative dose measurements in a homogeneous and a heterogeneous block phantom comprised of tissue, bone, and lung-equivalent materials. RESULTS: The characterized beam qualities and spatial photon distributions are comparable to reported values in the literature. Agreement between computed and measured percent depth-dose curves is ⩽ 2% in the homogeneous block phantom and ⩽ 2.5% in the heterogeneous block phantom. Transverse axis profiles taken at depths of 2 and 6 cm in the homogeneous block phantom show an agreement within 4%. All transverse axis dose profiles in water, in bone, and lung-equivalent materials for beams using a HBT, have an agreement within 5%. Measured profiles of FBT beams in bone and lung-equivalent materials were higher than their computed counterparts resulting in an agreement within 2.5%, 5%, and 8% within solid water, bone, and lung, respectively. CONCLUSIONS: The proposed virtual point source model and characterization method can be used to compute absorbed dose in both the homogeneous and heterogeneous block phantoms within of 2%-8% of measured values, depending on the phantom and the beam quality. The authors' results also provide experimental validation for their kV dose computation software, kVDoseCalc.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Método de Monte Carlo , Doses de Radiação , Imagens de Fantasmas
3.
Med Phys ; 39(6): 3041-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755689

RESUMO

PURPOSE: To investigate and validate the clinical feasibility of using half-value layer (HVL) and peak tube potential (kVp) for characterizing a kilovoltage (kV) source spectrum for the purpose of computing kV x-ray dose accrued from imaging procedures. To use this approach to characterize a Varian® On-Board Imager® (OBI) source and perform experimental validation of a novel in-house hybrid dose computation algorithm for kV x-rays. METHODS: We characterized the spectrum of an imaging kV x-ray source using the HVL and the kVp as the sole beam quality identifiers using third-party freeware Spektr to generate the spectra. We studied the sensitivity of our dose computation algorithm to uncertainties in the beam's HVL and kVp by systematically varying these spectral parameters. To validate our approach experimentally, we characterized the spectrum of a Varian® OBI system by measuring the HVL using a Farmer-type Capintec ion chamber (0.06 cc) in air and compared dose calculations using our computationally validated in-house kV dose calculation code to measured percent depth-dose and transverse dose profiles for 80, 100, and 125 kVp open beams in a homogeneous phantom and a heterogeneous phantom comprising tissue, lung, and bone equivalent materials. RESULTS: The sensitivity analysis of the beam quality parameters (i.e., HVL, kVp, and field size) on dose computation accuracy shows that typical measurement uncertainties in the HVL and kVp (±0.2 mm Al and ±2 kVp, respectively) source characterization parameters lead to dose computation errors of less than 2%. Furthermore, for an open beam with no added filtration, HVL variations affect dose computation accuracy by less than 1% for a 125 kVp beam when field size is varied from 5 × 5 cm(2) to 40 × 40 cm(2). The central axis depth dose calculations and experimental measurements for the 80, 100, and 125 kVp energies agreed within 2% for the homogeneous and heterogeneous block phantoms, and agreement for the transverse dose profiles was within 6%. CONCLUSIONS: The HVL and kVp are sufficient for characterizing a kV x-ray source spectrum for accurate dose computation. As these parameters can be easily and accurately measured, they provide for a clinically feasible approach to characterizing a kV energy spectrum to be used for patient specific x-ray dose computations. Furthermore, these results provide experimental validation of our novel hybrid dose computation algorithm.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Modelos Teóricos , Reprodutibilidade dos Testes , Análise Espectral
4.
Med Phys ; 38(3): 1378-88, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520849

RESUMO

PURPOSE: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. METHODS: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. RESULTS: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1 x 10(6). CONCLUSIONS: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Absorção , Gráficos por Computador , Humanos , Método de Monte Carlo , Fótons , Reprodutibilidade dos Testes , Fatores de Tempo , Incerteza , Interface Usuário-Computador
5.
Micron ; 40(4): 486-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19171487

RESUMO

Tumour grade (a measure of the degree of cellular differentiation of malignant neoplasm) is an important prognostic factor in many types of cancer. In general, poorly differentiated tumours are characterized by a higher degree of architectural irregularity and complexity of histological structures. Fractal dimension is a useful parameter for characterizing complex irregular structures. However, one of the difficulties of estimating the fractal dimension from microscopic images is the segmentation of pathologically relevant structures for analysis. A commonly used technique to segment structures of interest is to apply a pixel intensity threshold to convert the original image to binary and extract pixel outline structures from the binary representation. The difficulty with this approach is that the value of the threshold required to segment the histological structures is highly dependent on the staining technique chosen and imaging conditions (i.e., illumination time, intensity, and uniformity) of the microscopic system. In this work, we present a method for finding the optimal intensity threshold by maximizing the corresponding fractal dimension. This method results in the segmentation of histological structures and the estimation of their fractal dimension (independent of imaging conditions). We applied our technique to 164 prostate histology sections from 82 prostate core biopsy specimens (two serial sections from each of the 63 benign prostate tissues and 19 high grade prostate carcinoma). We stained one of the serial sections with conventional hemotoxylin and eosin (H&E) and the other with pan-keratin, and found that the difference in mean fractal dimension between the two groups was statistically significant (p<0.0001) for both stains. However, using receiver operating characteristics (ROC) analysis, we conclude that our fractal dimension method applied to the images of pan-keratin stained sections provides greater classification performance (benign versus high grade) than with those stained with H&E when compared to the original histological diagnosis. The sensitivity and specificity achieved with the pan-keratin images were 89.5% and 90.5%, respectively.


Assuntos
Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Biometria/métodos , Sensibilidade e Especificidade , Índice de Gravidade de Doença
6.
Med Phys ; 36(12): 5633-40, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095276

RESUMO

PURPOSE: Respiratory motion must be accounted for daily in order to permit optimum radiotherapy of hepatic malignancies. However, existing tracking systems are often invasive or poorly tolerated by patients. The authors describe the development and validation of an ultrasound-guided tracking and gating system for stereotactic body radiation therapy of the liver. METHODS: This noninvasive system is designed to determine the correlation between tumor and external fiducial motion and to verify the optimum gating level for treatment delivery daily. A tracked ultrasound probe moves with patient respiration, obtaining 2D ultrasound images of tumor motion throughout the respiratory cycle. The target volume is registered to the static radiotherapy treatment beams in order to verify optimum gating levels. These gating levels are then transferred to an existing gating system for treatment delivery. The authors examined the temporal and spatial accuracy of this system using a custom-built phantom and verified the accuracy of gating level transfer and delivery. RESULTS: The temporal accuracy of the ultrasound-guided system was shown to be comparable to the existing clinical x-ray imaging system. Using ultrasound rather than x-rays to image internal targets provides good soft-tissue contrast without the invasiveness of implanting fiducial markers. High frame rates enable continuous monitoring of the target throughout the respiratory cycle. The authors anticipate this passive monitoring system should be well tolerated by patients. CONCLUSIONS: The system developed provides good quality video of the laboratory motion phantom and can be successfully used in gated beam delivery.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Neoplasias Hepáticas/fisiopatologia , Movimento , Imagens de Fantasmas , Radiocirurgia , Reprodutibilidade dos Testes , Fatores de Tempo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...