Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253991

RESUMO

Twitter is one of the most popular social media networks that, in recent years, has been increasingly used by researchers as a platform to share science and discuss ongoing work. Despite its popularity, Twitter is not commonly used as a medium to teach science. Here, we summarize the results of #EUROmicroMOOC: the first worldwide Microbiology Massive Open Online Course taught in English using Twitter. Content analytics indicated that more than 3 million users saw posts with the hashtag #EUROmicroMOOC, which resulted in over 42 million Twitter impressions worldwide. These analyses demonstrate that free Microbiology MOOCs shared on Twitter are valuable educational tools that reach broad audiences throughout the world. We also describe our experience teaching an entire Microbiology course using Twitter and provide recommendations when using social media to communicate science to a broad audience.


Assuntos
Microbiologia , Mídias Sociais , Comunicação , Disseminação de Informação/métodos , Rede Social
2.
Biochem Soc Trans ; 33(Pt 1): 36-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15667258

RESUMO

Hydrogen metabolism is closely related to other important metabolic and energetic processes of bacterial cells, such as photosynthesis, anaerobic respiration and sulphur metabolism. Even small environmental changes influence these networks through different regulatory systems. The presence or absence of oxygen is one of the most important signals; how the cascades evolved to transmit this signal in different bacteria is summarized. In many instances, hydrogen is released only under anoxic conditions, because of bioenergetic considerations. Most [NiFe] hydrogenases are inactivated by oxygen, but many of them can be re-activated under reducing conditions. In addition to direct inactivation of the hydrogenases, oxygen can also regulate their expression. The global regulatory systems [FNR (fumarate and nitrate reduction regulator), ArcAB (aerobic respiratory control) and RegAB], which respond to alterations in oxygen content and redox conditions of the environment, have an important role in hydrogenase regulation of several bacteria. FNR-like proteins were shown to be important for the regulation of hydrogenases in Escherichia coli, Thiocapsa roseopersicina and Rhizobium leguminosarum, whereas RegA protein modulates the expression of hupSL genes in Rhodobacter capsulatus.


Assuntos
Anaerobiose , Bactérias/enzimologia , Hidrogenase/metabolismo , Oxirredução , Oxigênio/metabolismo
3.
Biochem Soc Trans ; 33(Pt 1): 61-3, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15667265

RESUMO

The purple sulphur phototrophic bacterium, Thiocapsa roseopersicina BBS, contains several NiFe hydrogenases. One of these enzymes (HynSL) is membrane associated, remarkably stable and can be used for practical applications. HupSL is also located in the photosynthetic membrane, its properties are similar to other known Hup-type NiFe hydrogenases. A third hydrogenase activity was located in the soluble fraction and was analogous to the NAD-reducing hydrogenases of cyanobacteria. The hoxEFUYH genes are transcribed together. HoxE is needed for the in vivo electron flow to and from the soluble hydrogenase. Some of the accessory genes were identified using random mutagenesis, and sequencing of the T. roseopersicina genome is in progress. The HupD, HynD and HoxW gene products corresponded to the proteases processing the C-termini of the three NiFe hydrogenases respectively. HypF and HupK mutants displayed significant in vivo H(2) evolution, which could be linked to the nitrogenase activity for the DeltahypF and to the bidirectional Hox activity in the DeltahupK strain. Both HypC proteins are needed for the biosynthesis of each NiFe hydrogenase. The hydrogenase expression is regulated at the transcriptional level through distinct mechanisms. The expression of hynSL is up-regulated under anaerobic conditions with the participation of an FNR (fumarate and nitrate reduction regulator)-type protein, FnrT. Although the genes encoding a typical H(2) sensor (hupUV) and a two-component regulator (hupR and hupT) are present in T. roseopersicina, the system is cryptic in the wild-type BBS strain. The hupR gene was identified in the gene cluster downstream from hupSL. Introduction of actively expressed hupT repressed the hupSL gene expression as expected by analogy with other bacteria.


Assuntos
Hidrogenase/metabolismo , Thiocapsa roseopersicina/enzimologia , Genes Bacterianos , Hidrogenase/genética , Thiocapsa roseopersicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...