Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0126122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876524

RESUMO

Cyclic lipopeptides (CLiPs) are secondary metabolites secreted by a range of bacterial phyla. CLiPs from Pseudomonas in particular, display diverse structural variations in terms of the number of amino acid residues, macrocycle size, amino acid identity, and stereochemistry (e.g., d- versus l-amino acids). Reports detailing the discovery of novel or already characterized CLiPs from new sources appear regularly in literature. Increasingly, however, the lack of detailed characterization threatens to cause considerable confusion, especially if configurational heterogeneity is present for one or more amino acids. Using Pseudomonas CLiPs from the Bananamide, Orfamide, and Xantholysin groups as test cases, we demonstrate and validate that the combined 1H and 13C Nuclear Magnetic Resonance (NMR) chemical shifts of CLiPs constitute a spectral fingerprint that is sufficiently sensitive to differentiate between possible diastereomers of a particular sequence even when they only differ in a single d/l configuration. Rapid screening, involving simple matching of the NMR fingerprint of a newly isolated CLiP with that of a reference CLiP of known stereochemistry, can then be applied to resolve dead-ends in configurational characterization and avoid the much more cumbersome chemical characterization protocols. Even when the stereochemistry of a particular reference CLiP remains to be established, its spectral fingerprint allows to quickly verify whether a newly isolated CLiP is novel or already present in the reference collection. We show NMR fingerprinting leads to a simple approach for early on dereplication which should become more effective as more fingerprints are collected. To benefit research involving CLiPs, we have made a publicly available data repository accompanied by a 'knowledge base' at https://www.rhizoclip.be, where we present an overview of published NMR fingerprint data of characterized CLiPs, together with literature data on the originally determined structures. IMPORTANCE Pseudomonas CLiPs are ubiquitous specialized metabolites, impacting the producer's lifestyle and interactions with the (a)biotic environment. Consequently, they generate interest for agricultural and clinical applications. Establishing structure-activity relationships as a premise to their development is hindered because full structural characterization including stereochemical information requires labor-intensive analyses, without guarantee for success. Moreover, increasing use of superficial comparison with previously characterized CLiPs introduces or propagates erroneous attributions, clouding further scientific progress. We provide a generally applicable characterization methodology based on matching NMR spectral fingerprints of newly isolated CLiPs to natural and synthetic reference compounds with (un)known stereochemistry. In addition, NMR fingerprinting is shown to provide a suitable basis for structural dereplication. A publicly available reference compound repository promises to facilitate participation of the lipopeptide research community in structural assessment and dereplication of newly isolated CLiPs, which should also support further developments in genome mining for novel CLiPs.


Assuntos
Lipopeptídeos , Pseudomonas , Aminoácidos/metabolismo , Antibacterianos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo
2.
Molecules ; 24(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213011

RESUMO

Cyclic lipodepsipeptides or CLiPs from Pseudomonas are secondary metabolites that mediate a wide range of biological functions for their producers, and display antimicrobial and anticancer activities. Direct interaction of CLiPs with the cellular membranes is presumed to be essential in causing these. To understand the processes involved at the molecular level, knowledge of the conformation and dynamics of CLiPs at the water-lipid interface is required to guide the interpretation of biophysical investigations in model membrane systems. We used NMR and molecular dynamics to study the conformation, location and orientation of the Pseudomonas CLiP viscosinamide in a water/dodecylphosphocholine solution. In the process, we demonstrate the strong added value of combining uniform, isotope-enriched viscosinamide and protein NMR methods. In particular, the use of techniques to determine backbone dihedral angles and detect and identify long-lived hydrogen bonds, establishes that the solution conformation previously determined in acetonitrile is maintained in water/dodecylphosphocholine solution. Paramagnetic relaxation enhancements pinpoint viscosinamide near the water-lipid interface, with its orientation dictated by the amphipathic distribution of hydrophobic and hydrophilic residues. Finally, the experimental observations are supported by molecular dynamics simulations. Thus a firm structural basis is now available for interpreting biophysical and bioactivity data relating to this class of compounds.


Assuntos
Lipopeptídeos/química , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Conformação Proteica , Acetonitrilas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Soluções
3.
J Phys Chem A ; 121(18): 3392-3400, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28423274

RESUMO

Long-range intramolecular vibrational energy redistribution (IVR) driven conformational changes were investigated in a matrix-isolated open-chain, asymmetrical dicarboxylic acid, E-glutaconic acid. Although the analysis was challenging due to the presence of multiple backbone conformers and short lifetimes of the prepared higher energy cis conformers, it was shown that the selective excitation of the O-H stretching overtone of one of the carboxylic groups can induce the conformational change (trans to cis) of the other carboxylic group, located at the other end of the E-glutaconic acid molecule. This is a direct proof that the IVR process can act through eight covalent bonds in a flexible molecule before the excess energy completely dissipates into the matrix. The lifetime of the prepared higher energy conformers (averaged over the different backbones) was measured to be 12 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...