Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205973

RESUMO

The Arabidopsis AtCRK5 protein kinase is involved in the establishment of the proper auxin gradient in many developmental processes. Among others, the Atcrk5-1 mutant was reported to exhibit a delayed gravitropic response via compromised PIN2-mediated auxin transport at the root tip. Here, we report that this phenotype correlates with lower superoxide anion (O2•-) and hydrogen peroxide (H2O2) levels but a higher nitric oxide (NO) content in the mutant root tips in comparison to the wild type (AtCol-0). The oxidative stress inducer paraquat (PQ) triggering formation of O2•- (and consequently, H2O2) was able to rescue the gravitropic response of Atcrk5-1 roots. The direct application of H2O2 had the same effect. Under gravistimulation, correct auxin distribution was restored (at least partially) by PQ or H2O2 treatment in the mutant root tips. In agreement, the redistribution of the PIN2 auxin efflux carrier was similar in the gravistimulated PQ-treated mutant and untreated wild type roots. It was also found that PQ-treatment decreased the endogenous NO level at the root tip to normal levels. Furthermore, the mutant phenotype could be reverted by direct manipulation of the endogenous NO level using an NO scavenger (cPTIO). The potential involvement of AtCRK5 protein kinase in the control of auxin-ROS-NO-PIN2-auxin regulatory loop is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitação , Gravitropismo/genética , Peróxido de Hidrogênio/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Front Plant Sci ; 10: 1584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921239

RESUMO

Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.

3.
Plant Cell Rep ; 36(1): 61-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27686461

RESUMO

KEY MESSAGE: An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts. LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.


Assuntos
Brachypodium/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Transcrição Gênica , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
4.
Biol Rev Camb Philos Soc ; 90(4): 1065-99, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25367752

RESUMO

Proline is not only an essential component of proteins but it also has important roles in adaptation to osmotic and dehydration stresses, redox control, and apoptosis. Here, we review pathways of proline biosynthesis in the three domains of life. Pathway reconstruction from genome data for hundreds of eubacterial and dozens of archaeal and eukaryotic organisms revealed evolutionary conservation and variations of this pathway across different taxa. In the most prevalent pathway of proline synthesis, glutamate is phosphorylated to γ-glutamyl phosphate by γ-glutamyl kinase, reduced to γ-glutamyl semialdehyde by γ-glutamyl phosphate reductase, cyclized spontaneously to Δ(1)-pyrroline-5-carboxylate and reduced to proline by Δ(1)-pyrroline-5-carboxylate reductase. In higher plants and animals the first two steps are catalysed by a bi-functional Δ(1) -pyrroline-5-carboxylate synthase. Alternative pathways of proline formation use the initial steps of the arginine biosynthetic pathway to ornithine, which can be converted to Δ(1)-pyrroline-5-carboxylate by ornithine aminotransferase and then reduced to proline or converted directly to proline by ornithine cyclodeaminase. In some organisms, the latter pathways contribute to or could be fully responsible for the synthesis of proline. The conservation of proline biosynthetic enzymes and significance of specific residues for catalytic activity and allosteric regulation are analysed on the basis of protein structural data, multiple sequence alignments, and mutant studies, providing novel insights into proline biosynthesis in organisms. We also discuss the transcriptional control of the proline biosynthetic genes in bacteria and plants.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Evolução Biológica , Eucariotos/metabolismo , Regulação da Expressão Gênica , Prolina/biossíntese
5.
Plant Cell ; 25(5): 1592-608, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23673979

RESUMO

CRK5 is a member of the Arabidopsis thaliana Ca(2+)/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5-green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane-associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Exocitose , Gravitropismo , Raízes de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/enzimologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fosforilação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
6.
Curr Med Res Opin ; 23(7): 1541-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17559752

RESUMO

BACKGROUND: The epsilon4 allele of the gene encoding apolipoprotein E (apoE) is associated with elevated serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), as well as an increased risk of coronary heart disease (CHD), greater disease severity, and higher CHD mortality. ApoE epsilon4 allele carriers have also shown reduced lipid and lipoprotein responses to lipid-modifying pharmacotherapy and lifestyle modifications. OBJECTIVE: To provide preliminary descriptive data on the effects of apoE genotype on lipid and lipoprotein responses to the cholesterol absorption inhibitor ezetimibe (Ezetrol/Zetia) in Hungarian subjects not at cholesterol goals at baseline. METHODS: This prospective open-label study compared the effects of the cholesterol absorption inhibitor ezetimibe 10 mg/day for up to 6 weeks added to existing therapies on the lipid profiles of 14 epsilon4 allele carriers and 14 age- and gender-matched APOE3/APOE3 homozygotes. RESULTS: Treatment with ezetimibe reduced TC, LDL-, and triglycerides, and increased high-density lipoprotein cholesterol (HDL-) significantly from baseline, and to similar extents, in both groups, lowering TC from baseline by 13.7% in APOE3/APOE3 homozygotes compared with 12.1% in epsilon4 allele carriers (p = 0.139); LDL-C by 22.8% (vs. 19.6%; p = 0.081); and triglycerides by 9.2% (vs. 9.1%; p = 0.120). Ezetimibe also increased HDL-C by 8.0% in subjects with the epsilon3/epsilon3 genotype compared with 8.9% in epsilon4 allele carriers (p = 0.263). CONCLUSIONS: Ezetimibe significantly improved lipid and lipoprotein profiles from baseline irrespective of apoE epsilon3/epsilon3 or epsilon4 genotype in Hungarian subjects not at cholesterol goals. Limitations of our study include its open-label nature and small sample population, as well as the facts that patients with the epsilon4 allele were not included and data were not collected on initial cholesterol levels, initial statin doses, cholesterol responses to statins, and the safety and tolerability of ezetimibe. Further randomized controlled studies in larger numbers of people followed for longer intervals are warranted to confirm these findings.


Assuntos
Anticolesterolemiantes/uso terapêutico , Apolipoproteínas E/genética , Azetidinas/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Lipídeos/sangue , Lipoproteínas/sangue , Alelos , Ezetimiba , Feminino , Genótipo , Humanos , Hungria , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...