Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38066687

RESUMO

The physical and chemical characteristics of the bedrock, along with the geological and hydrological conditions of karst caves may influence the taxonomic and functional diversity of prokaryotes. Most studies so far have focused on microbial communities of caves including only a few samples and have ignored the chemical heterogeneity of different habitat types such as sampling sites, dripping water, carbonate precipitates, cave walls, cave sediment and surface soils connected to the caves. The aim of the present study was to compare the morphology, the composition and physiology of the microbiota in caves with similar environmental parameters (temperature, host rock, elemental and mineral composition of speleothems) but located in different epigenic karst systems. Csodabogyós Cave and Baradla Cave (Hungary) were selected for the analysis of bacterial and archaeal communities using electron microscopy, amplicon sequencing, X-ray diffraction, and mass spectroscopic techniques. The microbial communities belonged to the phyla Pseudomonadota, Acidobacteriota, Nitrospirota and Nitrososphaerota, and they showed site-specific variation in composition and diversity. The results indicate that morphological and physiological adaptations provide survival for microorganisms according to the environment. In epigenic karst caves, prokaryotes are prone to increase their adsorption surface, cooperate in biofilms, and implement chemolithoautotrophic growth with different electron-donors and acceptors available in the microhabitats.


Assuntos
Cavernas , Microbiota , Cavernas/microbiologia , Hungria , Bactérias/genética , Archaea/genética , Microbiota/genética
2.
Cryst Growth Des ; 23(5): 3202-3212, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159654

RESUMO

Dolomite [CaMg(CO3)2] formation under Earth surface conditions is considered largely inhibited, yet protodolomite (with a composition similar to dolomite but lacking cation ordering), and in some cases also dolomite, was documented in modern shallow marine and lacustrine, evaporative environments. Authigenic carbonate mud from Lake Neusiedl, a shallow, episodically evaporative lake in Austria consists mainly of Mg-calcite with zoning of Mg-rich and Mg-poor regions in µm-sized crystals. Within the Mg-rich regions, high-resolution transmission electron microscopy revealed < 5-nm-sized domains with dolomitic ordering, i.e., alternating lattice planes of Ca and Mg, in coherent orientation with the surrounding protodolomite. The calcite with less abundant Mg does not show such domains but is characterized by pitted surfaces and voids as a sign of dissolution. These observations suggest that protodolomite may overgrow Mg-calcite as a result of the changing chemistry of the lake water. During this process, oscillating concentrations (in particular of Mg and Ca) at the recrystallization front may have induced dissolution of Mg-calcite and growth of nanoscale domains of dolomite, which subsequently became incorporated as ordered domains in coherent orientation within less ordered regions. It is suggested that this crystallization pathway is capable of overcoming, at least at the nanoscale, the kinetic barrier to dolomite formation.

3.
PLoS One ; 16(1): e0245621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493213

RESUMO

Speleothems (dominated by cave-hosted carbonate deposits) are valuable archives of paleoclimate conditions. As such, they are potential targets of clumped isotope analyses that may yield quantified data about past temperature variations. Clumped isotope analyses of stalagmites, however, seldom provide useful temperature values due to various isotope fractionation processes. This study focuses on the determination of the microbially induced vital effect, i.e., the isotope fractionation processes related to bacterial carbonate production. A cave site with biologically mediated amorphous calcium carbonate precitation was selected as a natural laboratory. Calcite deposits were farmed under a UV lamp to prevent bacterial activity, as well as under control conditions. Microbiological analyses and morphological investigations using scanning electron microscopy showed that the UV lamp treatment effectively reduced the number of bacterial cells, and that bacterial carbonate production strongly influenced the carbonate's morphology. Stable oxygen isotope analyses of calcite and drip waters, as well as clumped isotope measurements revealed that, although most of the studied carbonates formed close to oxygen isotope equilibrium, clumped isotope Δ47 values varied widely from equilibrium to strongly fractionated data. Site-specific kinetic fractionations played a dominant role in the distribution of Δ47 values, whereas bacterial carbonate production did not result in a detectable clumped isotope effect.


Assuntos
Bactérias/crescimento & desenvolvimento , Carbonatos/química , Sedimentos Geológicos/química , Isótopos de Carbono/química , Carbonatos/metabolismo , Cavernas , Sedimentos Geológicos/microbiologia
4.
Acta Biomater ; 120: 104-115, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891873

RESUMO

Cross-sectional study of sound primary dental enamel revealed hardness zonation and, in parallel, significant change in the Mg content below the prismless layer. Mg content is known to play an important role in enamel apatite biomineralization, therefore, Mg ion exchange experiments were carried out on the outer surface of sound primary molars and on reference abiogenic Ca-phosphates using MgCl2 solution. Effects of Mg incorporation on crystal/particle size, ionic ratio and morphology were compared and the observed changes were explained by parallel diffusion and dissolution/reprecipitation processes. Based on depth profile analysis and high resolution electron microscopy of the Mg-exchanged dental enamel, a poorly ordered surface layer of approximately 10-15 nanometer thickness was identified. This thin layer is strongly enriched in Mg and has non-apatitic structure. Below the surface layer, the Mg content increased only moderately (up to ~3 at%) and the apatite crystal structure of enamel was preserved. As a common effect of the Mg exchanged volume, primary dental enamel exhibited about 20% increase of nanohardness, which is intrepreted by strengthening of both the thin surface layer and the region below due to the decreased crystallite size and the effect of incorporated Mg, respectively. STATEMENT OF SIGNIFICANCE: Dental enamel is the most durable mineralized tissue in the human body, which, in spite to be exposed to extreme conditions like mastication and acidic dissolution, is able to fulfill its biological function during lifetime. In this study we show that minor component magnesium can affect hardness properties of human primary dental enamel. Then, through Mg incorporation experiments we provide an additional proof for the poorly ordered Mg-containing intergranular phase which has been recently observed. Also, we report that the hardness of dental enamel can be increased by ca. 20% by Mg incorporation. These results contribute to a deeper understanding of sound primary dental enamel structure and may inspire new pathways for assisted remineralization of enamel and regenerative dentistry.


Assuntos
Magnésio , Fosfatos , Estudos Transversais , Esmalte Dentário , Dureza , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...