Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511671

RESUMO

Single-stranded DNA binding proteins (SSBs) are ubiquitous across all domains of life and play essential roles via stabilizing and protecting single-stranded (ss) DNA as well as organizing multiprotein complexes during DNA replication, recombination, and repair. Two mammalian SSB paralogs (hSSB1 and hSSB2 in humans) were recently identified and shown to be involved in various genome maintenance processes. Following our recent discovery of the liquid-liquid phase separation (LLPS) propensity of Escherichia coli (Ec) SSB, here we show that hSSB2 also forms LLPS condensates under physiologically relevant ionic conditions. Similar to that seen for EcSSB, we demonstrate the essential contribution of hSSB2's C-terminal intrinsically disordered region (IDR) to condensate formation, and the selective enrichment of various genome metabolic proteins in hSSB2 condensates. However, in contrast to EcSSB-driven LLPS that is inhibited by ssDNA binding, hSSB2 phase separation requires single-stranded nucleic acid binding, and is especially facilitated by ssDNA. Our results reveal an evolutionarily conserved role for SSB-mediated LLPS in the spatiotemporal organization of genome maintenance complexes. At the same time, differential LLPS features of EcSSB and hSSB2 point to functional adaptations to prokaryotic versus eukaryotic genome metabolic contexts.


Assuntos
DNA , Separação de Fases , Animais , Humanos , Proteínas de Ligação a DNA/química , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos/genética
2.
Nat Commun ; 13(1): 654, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115525

RESUMO

Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Cruciforme/química , DNA Cruciforme/genética , Proteínas de Ligação a DNA/genética , Humanos , Cinética , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , RecQ Helicases/genética , Reparo de DNA por Recombinação/genética
3.
Proc Natl Acad Sci U S A ; 117(42): 26206-26217, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020264

RESUMO

Bacterial single-stranded (ss)DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL), and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein-protein interactions with DNA-metabolizing proteins. Here we show that the Escherichia coli SSB protein forms liquid-liquid phase-separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA, and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Extração Líquido-Líquido/métodos , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
4.
Nucleic Acids Res ; 45(20): 11878-11890, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29059328

RESUMO

The single-stranded DNA binding protein (SSB) of Escherichia coli plays essential roles in maintaining genome integrity by sequestering ssDNA and mediating DNA processing pathways through interactions with DNA-processing enzymes. Despite its DNA-sequestering properties, SSB stimulates the DNA processing activities of some of its binding partners. One example is the genome maintenance protein RecQ helicase. Here, we determine the mechanistic details of the RecQ-SSB interaction using single-molecule magnetic tweezers and rapid kinetic experiments. Our results reveal that the SSB-RecQ interaction changes the binding mode of SSB, thereby allowing RecQ to gain access to ssDNA and facilitating DNA unwinding. Conversely, the interaction of RecQ with the SSB C-terminal tail increases the on-rate of RecQ-DNA binding and has a modest stimulatory effect on the unwinding rate of RecQ. We propose that this bidirectional communication promotes efficient DNA processing and explains how SSB stimulates rather than inhibits RecQ activity.


Assuntos
DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , RecQ Helicases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Magnetismo , Modelos Moleculares , Conformação de Ácido Nucleico , Pinças Ópticas , Ligação Proteica , Domínios Proteicos , RecQ Helicases/química
5.
Proc Natl Acad Sci U S A ; 114(4): E466-E475, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069956

RESUMO

Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinação Homóloga , RecQ Helicases/metabolismo , Reparo do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Sequências Repetidas Invertidas , RecQ Helicases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...