Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 194: 110677, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724616

RESUMO

After a nuclear or radiation event, emergency responders and radiation protection authorities need quick and credible information based on reliable accident and post-accident radiological data. However, risks to people in the vicinity of the source pose serious measurement challenges. Many problems could be solved by unmanned airborne monitoring systems, but the current ones are mostly based on non-spectrometric detectors carried by drones with low bearing, short flying range and flight time. Therefore spectrometric monitoring system based on High-Purity Germanium (HPGe) detector carried by powerful unmanned helicopter has been developed. The presented unmanned aerial spectrometric system is reliable and heavy-duty and enables quick and safe identification of released radionuclides, thus provides a basis for determining the plant damage state and for planning of emergency and contamination zones. The system will support timely, effective actions that protect the public and environment against the effects of ionizing radiation. The paper describes development and performance tests of this novel system.

2.
Membranes (Basel) ; 12(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422128

RESUMO

Electrodialysis is an important electromembrane separation process anticipated to play a significant role in developing future technologies. It produces ion-depleted and ion-concentrated product streams, intrinsically suggesting the formation of spatial gradients of relevant quantities. These quantities affect local conditions in an electrodialysis unit. To investigate the spatial distribution of electric potentials, we constructed a model electrodialysis system with a single diluate channel that included ports for inserting reference electrodes measuring potential profiles. We validated our system and measurement methods in a series of control experiments under a solution flow rate of 250 µL/min and current densities between 10 and 52 A/m2. The collected data showed that the electric potential in the diluate channel did not change in the vertical direction (direction of gravity force), and only minimally varied in the diluate channel center in the flow direction. Although we could not reconstruct the potential profile within ion-depleted layers due to the resolution of the method, we found appreciable potential variation across the diluate channel. The most significant potential drops were localized on the membranes with the developed ion-depleted zones. Interestingly, these potential drops abruptly increased when we applied current loads, yielding almost complete desalination. The increase in the resistance accompanied by relatively large fluctuations in the measured potential indicated the system transition into limiting and overlimiting regions, and the onset of overlimiting convection.

3.
ACS Appl Mater Interfaces ; 13(13): 15053-15063, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760592

RESUMO

Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.


Assuntos
Estruturas Metalorgânicas/química , Microcistinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Microcystis/química , Modelos Moleculares , Purificação da Água/métodos
4.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650603

RESUMO

Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.


Assuntos
Ibuprofeno/isolamento & purificação , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Adsorção , Ibuprofeno/química , Fenobarbital/química , Fenobarbital/isolamento & purificação , Poluentes Químicos da Água/química
5.
Inorg Chem ; 59(8): 5538-5545, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275140

RESUMO

Porous metal-organic frameworks (MOFs) have excellent characteristics for the adsorptive removal of environmental pollutants. Herein, we introduce a new series of highly stable MOFs constructed using Fe3+ and Al3+ metal ions and bisphosphinate linkers. The isoreticular design leads to ICR-2, ICR-6, and ICR-7 MOFs with a honeycomb arrangement of linear pores, surface areas up to 1360 m2 g-1, and high solvothermal stabilities. In most cases, their sorption capacity is retained even after 24 h of reflux in water. The choice of the linkers allows for fine-tuning of the pore sizes and the chemical nature of the pores. This feature can be utilized for the optimization of host-guest interactions between molecules and the pore walls. Water pollution by various endocrine disrupting chemicals has been considered a global threat to public health. In this work, we prove that the chemical stability and hydrophobic nature of the synthesized series of MOFs result in the remarkable sorption properties of these materials for endocrine disruptor bisphenol A.

6.
J Comput Aided Mol Des ; 34(6): 683-695, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052351

RESUMO

Classical molecular simulation methods were used for a description of an arrangement of intercalated molecules N-(pyridin-4-yl)pyridin-4-amine (AH) and its derivatives, 3-methyl-N-(pyridin-4-yl)pyridin-4-amine (AMe), and 3-nitro-N-(pyridin-4-yl)pyridin-4-amine (ANO2) within a layered structure of zirconium 4-sulfophenylphosphonate. The intercalated molecules were placed between SO3H groups of the host layers. Their mutual positions and orientations were solved by molecular simulation methods and compared with the presented experimental results. Final calculated data showed differences of partially disordered arrangement of the intercalated molecules between zirconium 4-sulfophenylphosphonate layers. The calculation results revealed a dense net of hydrogen bonds connecting water molecules and the guests in the interlayer space and the sulfo groups of the host layers. We calculated the dipole moments of the AH, AMe and ANO2 guests in the final models in order to illustrate potential use of these materials in non-linear optics.


Assuntos
Aminas/química , Modelos Moleculares , Piridinas/química , Simulação por Computador , Ligação de Hidrogênio , Estrutura Molecular , Zircônio/química
7.
J Hazard Mater ; 382: 121001, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454610

RESUMO

Chemical warfare agents are still a threat to humanity despite the existence of a ban on their production and use. There are many new materials that have been experimentally verified to be effective in degrading and eliminating various chemical warfare agents; however, clay minerals still remain very effective, environmentally friendly and not expensive. Vermiculites modified with hexadecylpyridinium, hexadecyltrimethylammonium and tetramethylammonium cations were used for static sorption of vapours of two simulants of nerve agents: dimethyl methyl phosphonate and diethyl ethyl phosphonate. The materials before and after sorption were characterized using infrared spectroscopy, X-ray diffraction and carbon phase analysis. The breakthrough time and capture of simulants were measured using dynamic sorption test. Molecular modelling was used to confirm the experimental results and provide a deeper insight into the structure of the materials and sorption processes.

8.
Biomicrofluidics ; 13(6): 064102, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31700561

RESUMO

Polarization of the ion-selective systems results in the formation of ion-depleted and ion-concentrated zones in the electrolyte layers adjacent to the system. One can employ ion-concentration polarization for the removal of charged large molecules and small ions from the flowing liquid. Removal of large molecules from the flowing solution and their local accumulation is often referred to as preconcentration, removal of small ions as desalination. Here, we study the effect of the channel geometry on the removal of charged species from their water solutions experimentally. Straight, converging, and diverging channels equipped with a pair of heterogeneous cation-exchange membranes are compared in terms of their effect on preconcentration of an observable fluorescein dye and on desalination of water solution of potassium chloride. Our results show that preconcentration of the dye is not significantly affected by the channel geometry. The distance of the preconcentration band from one of the membranes was approximately the same in all tested channel geometries. The major difference was in the location of the band within the channel, when the conical channels localized the band at one of the channel walls. The straight channel showed a slightly broader range of applicable flow rates. The semibatch desalination of 0.01M KCl solution turned out to be more efficient in conical channels, which was associated with a larger volume of the channel available for the accumulation of the concentrated solution. Our results suggest that conical channels can be advantageously used in transforming the ion-concentration-polarization-based semibatch desalination into a fully continuous one.

9.
Med Sci Monit ; 24: 3929-3945, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29887594

RESUMO

BACKGROUND The aim of the study was to investigate the role of von Willebrand factor (vWF), the vWF-cleaving protease, ADAMTS13, the composition of thrombus, and patient outcome following mechanical cerebral artery thrombectomy in patients with acute ischemic stroke. MATERIAL AND METHODS A prospective cohort study included 131 patients with ischemic stroke (<6 hours) with or without intravenous thrombolysis. Interventional procedure parameters, hemocoagulation markers, vWF, ADAMTS13, and histological examination of the extracted thrombi were performed. The National Institutes of Health Stroke Scale (NIHSS) score was used on hospital admission, after 24 hours, at day 7; the three-month modified Rankin Scale score was used. RESULTS Mechanical thrombectomy resulted in a Treatment in Cerebral Ischemia (TICI) score of 2-3, with recanalization in 89% of patients. Intravenous thrombolysis was used in 101 (78%). Patients with and without intravenous thrombolysis therapy had a good clinical outcome (score 0-2) in 47% of cases (P=0.459) using the three-month modified Rankin Scale. Patients with a National Institutes of Health Stroke Scale (NIHSS) score ≥15 had significantly increased vWF levels (P=0.003), and a significantly increased vWF: ADAMTS13 ratio (P=0.038) on hospital admission. Significant correlation coefficients were found for plasma vWF and thrombo-embolus vWF (r=0.32), platelet (r=0.24), and fibrin (r=0.26) levels. In the removed thrombus, vWF levels were significantly correlated with platelet count (r=0.53), CD31-positive cells (r=0.38), and fibrin (r=0.48). CONCLUSIONS In patients with acute ischemic stroke, mechanical cerebral artery thrombectomy resulted in a good clinical outcome in 47% of cases, with and without intravenous thrombolysis therapy.


Assuntos
Proteína ADAMTS13/metabolismo , Isquemia Encefálica/cirurgia , Artérias Cerebrais/patologia , Acidente Vascular Cerebral/cirurgia , Trombectomia , Trombose/metabolismo , Fator de von Willebrand/metabolismo , Idoso , Idoso de 80 Anos ou mais , Coagulação Sanguínea , Isquemia Encefálica/sangue , Isquemia Encefálica/metabolismo , Artérias Cerebrais/metabolismo , Demografia , Feminino , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/metabolismo , Trombose/sangue , Trombose/imunologia , Resultado do Tratamento
10.
Dalton Trans ; 47(9): 2867-2880, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29340415

RESUMO

The intercalation chemistry of layered alkaline-earth metal phenylphosphonates with the general formula MeC6H5PO3·2H2O (Ca, Sr, Ba) is reviewed. The preparation of the host materials is described and their behavior in dependence on the relative humidity and pH of the reaction medium is discussed. Mutual relationships between MeC6H5PO3·2H2O and Me(C6H5PO3H)2 were investigated using a method of computer-controlled addition of reagents. The MeC6H5PO3·2H2O compounds are able to intercalate species having a free electron pair through the so-called coordination intercalation. In this way, 1-alkylamines, 1-alkanols, 1,n-diols and 1,2-diols were intercalated. In the case of the ethanol and methanol intercalates of strontium phenylphosphonate we were able to determine the structure of the host part by single-crystal X-ray diffraction. By combination of the data obtained from the diffraction with molecular modeling we suggested the arrangement of the host molecules in the interlayer space of the host. The arrangement of the shorter diols in the interlayer space of strontium phenylphosphonate was also proposed on the basis of molecular modeling calculations. These models help us to understand the structure of the prepared intercalates.

11.
Appl Radiat Isot ; 134: 351-357, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28899615

RESUMO

Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures.

12.
Appl Radiat Isot ; 134: 167-171, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28754325

RESUMO

A method is described for the subtraction of Monte Carlo simulated detector spectra of the contribution of natural radiation to measured detector spectra aiming to decrease the decision threshold for the detection of artificial radionuclides. HPGe detector spectra were simulated for selected naturally occurring radionuclides deposited onto a filter used for aerosol collection in a newly developed airborne radioactivity monitoring system. Stepwise, the simulated spectra were fitted to the actually acquired gamma-ray spectrum and the decision threshold was determined. Contribution of cosmic rays background was also estimated.

13.
J Mol Model ; 24(1): 10, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234891

RESUMO

Classical molecular simulation methods were used for a detailed structural description of zirconium 4-sulfophenylphosphonate and zirconium phenylphosphonate 4-sulfophenylphosphonates with general formula Zr(HO3SC6H4PO3) x (C6H5PO3)2-x ·yH2O (x = 0.7-2; y = 0 or 2). First, models describing the structure of zirconium 4-sulfophenylphosphonate (x = 2) were calculated for the hydrated (y = 2) and dehydrated (y = 0) compounds. Subsequently, models for two mixed zirconium phenylphosphonate 4-sulfophenylphosphonates (x = 1.3 and 0.7) were calculated. Optimized models suggest that the presence of water molecules between sulfo groups creates a water-sulfonate layer with a system of hydrogen bonds. We suppose that this arrangement is the reason for a higher proton conductivity of the hydrated samples compared to dehydrated samples. When the water molecules are removed, a small decrease in the basal spacing (around 0.06 Å) is observed. This behavior is confirmed by the simulated models, where no significant changes in the structure on dehydration were observed except the absence of the water molecules and a lower number of hydrogen bonds between two adjacent sulfonate sheets. Due to the good crystallinity of the samples and the presence of sharp non-basal peaks in their X-ray diffraction patterns, Miller indices of the non-basal peaks in the diffraction patterns calculated from the models can be compared with those found in the experimental data. This allowed us to precisely describe for example (15 5-2) planes, from which mutual distances of the phenyl rings were determined to be 2.62 Å. Graphical Abstract Detailed ball and stick view into the interlayer structure of ZrSPhP1.3.

14.
Appl Radiat Isot ; 126: 273-278, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28314506

RESUMO

The results of the three years European Metrology Research Programme's (EMRP) joint research project 'Metrology for processing materials with high natural radioactivity' (MetroNORM) are presented. In this project, metrologically sound novel instruments and procedures for laboratory and in-situ NORM activity measurements have been developed. Additionally, standard reference materials and sources for traceable calibration and improved decay data of natural radionuclides have been established.

15.
Appl Radiat Isot ; 126: 73-75, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28024982

RESUMO

Monte Carlo (MC) simulations were done for the optimization of shielding configuration of a novel industrial radionuclide-specific pre-selection free release measurement facility. The shielding is made from unique bricks of concrete with very low specific activity of natural radionuclides. The final configuration was selected as a compromise between shielding volume and the simulated 1461keV full-energy peak detector count rates of natural 40K.

16.
J Mol Model ; 22(6): 143, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27245062

RESUMO

Strontium phenylphosphonate intercalates with 1,2-diols (from 1,2-ethanediol to 1,2-hexanediol) were synthesized and characterized by X-ray diffraction, thermogravimetry, chemical analysis, and molecular simulation methods. Prepared samples exhibit a very good stability at ambient conditions. Structural arrangement calculated by simulation methods suggested formation of cavities surrounded by six benzene rings. Each cavity contained one molecule of diol and one molecule of water for the 1,2-ethanediol to 1,2-butanediol intercalates. In the case of 1,2-pentanediol two types of cavities alternated: one with diol molecules and another one with two water molecules. In the 1,2-hexanediol intercalate the benzene rings created two types of cavities containing one or two diol molecules, respectively, and this conformational variability led to a more disordered arrangement with respect to the models with shorter alkyl chains. Coordination of the oxygen atoms of the diols to the strontium atoms of the host follows the same pattern for all 1,2-diol intercalates except the 1,2-hexanediol intercalate, where these oxygen atoms can be mutually exchanged at their positions. The calculated basal spacings and structural models are in good agreement with experimental basal spacings obtained from X-ray powder diffraction and with other experimental results.

17.
Appl Radiat Isot ; 109: 96-100, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597655

RESUMO

A Europallet-sized calibration standard composed of 12 grey cast iron tubes contaminated with (60)Co and (110m)Ag with a mass of 246kg was developed. As the tubes were produced through centrifugal casting it was of particular concern to study the distribution of radionuclides in the radial direction of the tubes. This was done by removing 72 small samples (swarf) of ~0.3g each on both the inside and outside of the tubes. All of the samples were measured in the underground laboratory HADES.

18.
J Colloid Interface Sci ; 460: 181-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26319335

RESUMO

Strontium phenylphosphonate intercalates with 1,n diols (n=2-4, 6-8) having general formula SrC6H5PO3⋅x(HO(CH2)nOH)⋅yH2O were prepared by precipitation from strontium phenylphosphonate solution and the corresponding diols. Prepared compounds exhibit a very good stability at ambient conditions. The intercalates were characterized by X-ray diffraction, thermogravimetry and elemental analysis. Thanks to the existence of free spaces among the benzene rings the diols exhibit a peculiar intercalation behavior. This behavior is explained on the basis of molecular simulation, which facilitated to elucidate the arrangement of the diol (guest) molecules in the specifically shaped space between the layers of the host material. From the structural point of view the intercalates can be divided into two subgroups: (i) intercalates with 1,2- to 1,4-diols and (ii) intercalates with 1,6- to 1,8-diols. The alkanediols of the first group are immersed in the free spaces among the benzene groups, their molecules adopt a horseshoe shape meaning cis conformation and are bonded by both of their OH groups to one host layer. The longer alkanediol chains of the second group allow anchoring to both neighboring layers of the host forming a kind of pillared structure in the interlayer space. The diol molecules are in this case bonded to the host layers by their OH groups to the oxygen atoms of the host layers and to water molecules present in the interlayer space through hydrogen bonds. The values of the basal spacing obtained from the experimental powder X-ray patterns are in a very good agreement with the basal spacing values calculated from the models. The molecular simulation of a 1,5-pentanediol intercalate, which we were not be able to synthesize, explained why this intercalate cannot be stable.

19.
Appl Radiat Isot ; 87: 394-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24342559

RESUMO

We have tested two digital spectrometer systems, the DSP 9660 and Lynx(®) modules, connected to a HPGe detector. Lynx(®) is a fully integrated 32K channel signal analyzer based on digital signal processing techniques, which offers advanced digital stabilization. The model DSP 9660 digitalizes the signal directly at a very high sampling rate. The evaluated properties were integral nonlinearity, differential linearity, channel profiles, resolution and throughput. We found that the DSP system has slightly inferior resolution and throughput in comparison with the Lynx(®) system.

20.
Appl Radiat Isot ; 87: 348-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24300969

RESUMO

A novel free release measurement facility (FRMF) was developed within the joint research project "Metrology for Radioactive Waste Management" of the European Metrology Research Programme. Before and during FRMF design and construction, Monte Carlo calculations with MCNPX and PENELOPE codes were used to optimize the thickness of the shielding, the dimensions of the container, and the shape of detector collimators. Validation of the numerical models of the FRMF detectors and the results of the optimization are discussed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...