Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(7): 1161-1167, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704800

RESUMO

The addition of supercharging (SC) reagents in electrospray ionization coupled mass spectrometry (ESI-MS) has demonstrated several advantages for protein analysis such as reduced required mass range of the instrument, narrowed charge-state distribution, increased sensitivity, and adduct suppression. The potential use of SC reagents to improve analyses of larger and complex protein molecules such as monoclonal antibodies and antibody-drug conjugates (ADCs) has not been previously reported. In this study, the effect of seven SC reagents (meta-nitrobenzyl alcohol (m-NBA), dimethyl sulfoxide (DMSO), ortho-nitroanisole (o-NA), propane sultone (PS), ethylene carbonate (EC), propylene carbonate (PC), and sulfolane) on ESI-MS acquired spectra of deglycosylated, intact, and reduced trastuzumab and a vcMMAE-trastuzumab ADC was investigated under denaturing conditions. The addition of any of the SC reagents resulted in a higher average charge state observed for all tested reagents for both trastuzumab and the ADC and a narrower charge-state envelope for o-NA and 1% sulfolane for trastuzumab. However, improved peak shapes or increased sensitivity was observed for several reagents, overall increasing the spectra quality. Finally, it was shown that SC reagents can be safely used for ADC analysis without impacting the obtained drug-to-antibody (DAR) values, as all DAR values were within 0.1 from the control sample.


Assuntos
Imunoconjugados , Anticorpos Monoclonais , Indicadores e Reagentes , Espectrometria de Massas por Ionização por Electrospray/métodos , Trastuzumab
2.
Antibodies (Basel) ; 9(3)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911603

RESUMO

Antibody-drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps-as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC-MS))-was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC-MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at -20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.

3.
Anal Chem ; 92(13): 9001-9007, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441508

RESUMO

Characterization of antibody-drug conjugates (ADCs) using mass spectrometry (MS) is important in drug discovery and formulation development and as part of the quality control processes. To facilitate electrospray ionization (ESI) and produce high-quality mass spectra, common components of storage solutions for monoclonal antibodies (mAbs) and ADCs, such as nonvolatile phosphate-buffered saline (PBS), should be replaced before analysis. Centrifugal spin-type kits are extensively used for the desalting or buffer-exchange of mAbs and ADCs samples. The commercially available kits commonly require at least 100 µL of a sample at 1 mg/mL for optimal recovery. However, most ESI-MS based analyses require no more than 25 µg of protein for triplicate injection. In this study, we present a novel method for desalting of ADCs and mAbs building on the SP3 approach with nonfunctionalized carboxylate coated magnetic beads without affinity ligands. The analytes bind to the hydrophilic beads upon the addition of organic solvent, and various solutions of volatile salts or acids can be used in the elution step. The optimized protocol allowed for 88% recovery of ADC at a 25 µL sample volume and 90% recovery at 100 µL. More than 90% of the salts were removed using a process of 20 min. The intra- and interday precision showed little variation with an RSD of 1% and 2%, respectively. The compatibility of this new workflow with low sample volumes is highly valuable since a smaller fraction of the sample is wasted for analysis of the expensive analytes, without compromising recovery.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/análise , Magnetismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Espectrometria de Massas , Oligopeptídeos/química , Reprodutibilidade dos Testes , Solventes/química , Trastuzumab/química
4.
Anal Bioanal Chem ; 411(12): 2569-2576, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30848315

RESUMO

Antibody-drug conjugates (ADCs) are an inherently heterogeneous class of biotherapeutics, the development of which requires extensive characterization throughout. During the earliest phases of preclinical development, when synthetic routes towards the desired conjugate are being assessed, the main interest lies in the determination of the average drug-to-antibody ratio (DAR) of a given batch as well as information about different conjugation species. There has been a trend in mass spectrometry (MS)-based characterization of ADCs towards the use of high-resolving mass spectrometry for many of these analyses. Considering the high cost for such an instrument, the evaluation of cheaper and more accessible alternatives is highly motivated. We have therefore tested the applicability of a quadrupole mass analyzer for the aforementioned characterizations. Eight ADCs consisting of trastuzumab and varying stoichiometries of Mc-Val-Cit-PABC-monomethyl auristatin E conjugated to native cysteines were synthesized and served as test analytes. The average DAR value and molecular weights (Mw) of all detected chains from the quadrupole mass analyzer showed surprisingly high agreement with results obtained from a time-of-flight (TOF) mass analyzer and hydrophobic interaction chromatography (HIC)-derived values for all investigated ADC batches. Acquired Mw were within 80 ppm of TOF-derived values, and DAR was on average within 0.32 DAR units of HIC-derived values. Quadrupole mass spectrometers therefore represent a viable alternative for the characterization of ADC in early-stage development. Graphical abstract.


Assuntos
Antineoplásicos Imunológicos/química , Cisteína/química , Imunoconjugados/química , Espectrometria de Massas/métodos , Trastuzumab/química , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Peso Molecular , Espectrofotometria Ultravioleta
5.
J Dairy Res ; 84(4): 453-463, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29154730

RESUMO

It has been well established that milk yield is affected both by milking frequency and due to the removal of residual milk, but the influence of a combination of these factors is unclear. In this study, four mid-lactation cows were used in a 4 × 4 Latin square design to test the hypothesis that the effects of more frequent milking and residual milk removal on milk yield and composition are additive and alter milk fatty acid composition. Treatments comprised two or four times daily milking in combination with (or without) residual milk removal over a 96 h interval preceded by a 2 d pretreatment period and followed by a 8 d washout in each 14 d experimental period. Milk was sampled at each milking for the analysis of gross composition and SCC. Samples of available and residual milk collected on the last milking during each treatment period were collected and submitted for fatty acid composition analysis. Increases in milking frequency and residual milk removal alone or in combination had no effect on milk yield or on the secretion of lactose and protein in milk. However, residual milk removal during more frequent milking increased milk fat yield. Milking treatments had no major influence on the fatty acid composition of available milk, but resulted in rather small changes in the relative abundance of specific fatty acids, with no evidence that the additive effects of treatments were due to higher utilisation of preformed fatty acids relative to fatty acid synthesis de novo. For all treatments, fat composition of available and residual milk was rather similar indicating a highly uniform fatty acid composition of milk fat within the mammary gland.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/métodos , Ácidos Graxos/análise , Lactação/fisiologia , Leite/química , Animais , Contagem de Células/veterinária , Feminino , Lactose/análise , Glândulas Mamárias Animais/fisiologia , Leite/citologia , Proteínas do Leite/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...