Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 1046-1059, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335789

RESUMO

HYPOTHESIS: The question of why aqueous solutions of some surfactants demonstrate a rapid spreading (superspreading) over hydrophobic solid substrates, while solutions of other similar surfactants do not, has no definitive explanation despite numerous previous studies. The suggested hypothesis for this study assumes that once the spreading coefficient of surfactant is positive, there is a concentration range for solutions of any surfactant which demonstrates rapid spreading. As it is impossible to calculate spreading coefficients for solid substrates, we compare the spreading performance of known superspreaders and non-superspreaders on liquid (oil) substrate. EXPERIMENTS: The kinetics of spreading of aqueous solutions of a series of branched ionic surfactants and non-ionic trisiloxane surfactants on two liquid substrates was studied and compared with the spreading of a surfactant-free liquid, silicone oil. Both dynamic and equilibrium spreading coefficients were calculated using measured surface and interfacial tensions. FINDINGS: There is no difference in spreading rate on liquid substrate between solutions of surfactants proven as superspreaders (while spreading on solid substrate) or non-superspreaders. A rapid spreading (superspreading) with the characteristic rate of spreading O(102-103) mm2/s occurs if the dynamic spreading coefficients exceeds the positive threshold value. If the dynamic spreading coefficient is negative or slightly positive, complete wetting still occurs, but the spreading is slow with the spreading rate is O(1) mm2/s. Spreading exponents for surfactant solutions in the rapid spreading regime are considerably larger than for the surfactant-free liquid. A number of spreading and dewetting patterns were observed depending on the surfactant type, its concentration and substrate.

2.
Adv Colloid Interface Sci ; 312: 102844, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36708604

RESUMO

Surfactants are employed in microfluidic systems not just for drop stabilisation, but also to study local phenomena in industrial processes. On the scale of a single drop, these include foaming, emulsification and stability of foams and emulsions using statistically significant ensembles of bubbles or drops respectively. In addition, surfactants are often a part of a formulation in microfluidic drop reactors. In all these applications, surfactant dynamics play a crucial role and need to be accounted for. In this review, the effect of surfactant dynamics is considered on the level of standard microfluidic operations: drop formation, movement in channels and coalescence, but also on a more general level, considering the mechanisms controlling surfactant adsorption on time- and length-scales characteristic of microfluidics. Some examples of relevant calculations are provided. The advantages and challenges of the use of microfluidics to measure dynamic interfacial tension at short time-scales are discussed.

3.
Lab Chip ; 22(20): 3848-3859, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106479

RESUMO

The control of droplet formation and size using microfluidic devices is a critical operation for both laboratory and industrial applications, e.g. in micro-dosage. Surfactants can be added to improve the stability and control the size of the droplets by modifying their interfacial properties. In this study, a large-scale data set of droplet size was obtained from high-speed imaging experiments conducted on a flow-focusing microchannel where aqueous surfactant-laden droplets were generated in silicone oil. Three types of surfactants were used including anionic, cationic and non-ionic at concentrations below and above the critical micelle concentration (CMC). To predict the final droplet size as a function of flow rates, surfactant type and concentration of surfactant, two data-driven models were built. Using a Bayesian regularised artificial neural network and XGBoost, these models were initially based on four inputs (flow rates of the two phases, interfacial tension at equilibrium and the normalised surfactant concentration). The mean absolute percentage errors (MAPE) show that data-driven models are more accurate (MAPE = 3.9%) compared to semi-empirical models (MAPE = 11.4%). To overcome experimental difficulties in acquiring accurate interfacial tension values under some conditions, both models were also trained with reduced inputs by removing the interfacial tension. The results show again a very good prediction of the droplet diameter. Finally, over 10 000 synthetic data were generated, based on the initial data set, with a Variational Autoencoder (VAE). The high-fidelity of the extended synthetic data set highlights that this method can be a quick and low-cost alternative to study microdroplet formation in future lab on a chip applications, where experimental data may not be readily available.


Assuntos
Técnicas Analíticas Microfluídicas , Tensoativos , Teorema de Bayes , Micelas , Óleos de Silicone
4.
Langmuir ; 35(28): 9184-9193, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268330

RESUMO

The coalescence of two different drops, one surfactant-laden and the other surfactant-free, was studied under the condition of confined flow in a microchannel. The coalescence was accompanied by penetration of the surfactant-free drop into the surfactant-laden drop because of the difference in the capillary pressure and Marangoni flows causing a film of surfactant-laden liquid to spread over the surfactant-free drop. The penetration rate was dependent on the drop order, with considerably better penetration observed for the case when the surfactant-laden drop goes first. The penetration rate was found to increase with an increase of interfacial tension difference between the two drops, an increase of flow rate and drop confinement in the channel (for the case of the surfactant-laden drop going first), an increase of viscosity of the continuous phase, and a decrease of viscosity of the dispersed phase. Analysis of flow patterns inside the coalescing drops has shown that, unlike coalescence of identical drops, only two vortices are formed by asymmetrical coalescence, centered inside the surfactant-free drop. The vortices were accelerated by the flow of the continuous phase if the surfactant-laden drop preceded the surfactant-free one, increasing the rate of penetration; the opposite was observed if the drop order was reversed. The mixing patterns on a longer time scale were also dependent on the drop order, with better mixing being observed for the case when the surfactant-laden drop goes first.

5.
J Colloid Interface Sci ; 516: 182-191, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408104

RESUMO

HYPOTHESIS: Surfactant redistribution in a liquid bridge close to drop detachment depends on competition between the bridge deformation rate and surfactant equilibration rate. Surfactant effect can be different in situations when diffusion coefficient changes independently of thinning kinetics or in line with it. Using moderately viscous liquids should allow both situations to be explored experimentally. EXPERIMENTS: Formation of liquid drops at the tip of capillary is studied experimentally for silicone oils and for surfactant-laden and surfactant-free water/glycerol mixtures of moderate viscosity with particular attention to the kinetics of liquid bridge close to pinch-off and formation of satellite droplets. FINDINGS: Effect of surfactant depends on the dynamic regime of the bridge thinning. In the presence of surfactant, inertial kinetics slows down close to pinch-off demonstrating effective surface tension smaller than dynamic surface tension. An acceleration of thinning kinetics caused by depletion of surfactant from the liquid bridge was observed in viscous and visco-inertial regimes. The size of satellite droplets has a maximum versus viscosity; increasing with surfactant concentration at smaller viscosities and decreasing with an increase of surfactant concentration at largest studied viscosity, where inversion of the pinch-off point was observed for surfactant solutions.

6.
Soft Matter ; 13(26): 4616-4628, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28613315

RESUMO

This work focuses on the study of bulk flows accompanying the coalescence of two aqueous drops, one containing surfactant and the other surfactant-free, in silicone oils of various viscosities. It is observed that the surfactant-free drop intrudes into the surfactant-laden drop in the form of a penetrating jet whose speed increases and average radius decreases with increasing outer phase viscosity. Mixing patterns within the coalescing drops are due to the force imbalance caused by capillary pressure difference and surfactant-induced Marangoni stresses. The driving force for mixing associated with the difference in interfacial tension between the drops is considerably stronger than that related to the drop size. The long timescale mixing of the drops is driven by rapid interior convection, and the subsequent, slow, diffusive process. Three-dimensional numerical simulations show excellent qualitative and quantitative agreement with the experimental results. The implications of our results to formulation strategies of complex microstructures in practical applications are also discussed.

7.
Langmuir ; 33(18): 4367-4385, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28190350

RESUMO

There has been a substantial increase in the number of publications in the field of wetting and spreading since 2010. This increase in the rate of publications can be attributed to the broader application of wetting phenomena in new areas. It is impossible to review such a huge number of publications; that is, some topics in the field of wetting and spreading are selected to be discussed below. These topics are as follows: (i) Contact angle hysteresis on smooth homogeneous solid surfaces via disjoining/conjoining pressure. It is shown that the hysteresis contact angles can be calculated via disjoining/conjoining pressure. The theory indicates that the equilibrium contact angle is closer to a static receding contact angle than to a static advancing contact angle. (ii) The wetting of deformable substrates, which is caused by surface forces action in the vicinity of the apparent three-phase contact line, leading to a deformation on the substrate. (iii) The kinetics of wetting and spreading of non-Newtonian liquid (blood) over porous substrates. We showed that in spite of the enormous complexity of blood, the spreading over porous substrate can be described using a relatively simple model: a power low-shear-thinning non-Newtonian liquid. (iv) The kinetics of spreading of surfactant solutions. In this part, new results related to various surfactant solution mixtures (synergy and crystallization) are discussed, which shows some possible direction for the future revealing of superspreading phenomena. (v) The kinetics of spreading of surfactant solutions over hair. Fundamental problems to be solved are identified.

8.
Langmuir ; 32(20): 5069-77, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27148624

RESUMO

The results of an experimental study on thinning and breakage of liquid bridges during detachment of a drop from the tip of a capillary are presented for a series of surfactant solutions (including cationic, anionic, and nonionic surfactants) over a broad range of molecular masses, values of critical micelle concentration, and concentrations. The used experimental protocol revealed that the kinetics of the bridge thinning depends much more on the dynamics of adsorption at the surface of the drop before it destabilizes, rather than on the depletion of surfactant from the surface of the thinning bridge due to its stretching as the instability develops. The kinetics of the bridge thinning and the size of satellite droplets formed after the bridge breakage depend considerably on the surfactant concentration and the value of critical micelle concentration. It is proposed that the dynamic surface tension on the time scale of the drop formation can be used as an effective surface tension for the description of the bridge kinetics over the broad range of experimental conditions used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...