Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 146: 106293, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395940

RESUMO

Since its creation in 2002, the European Food Safety Authority (EFSA) has produced risk assessments for over 5000 substances in >2000 Scientific Opinions, Statements and Conclusions through the work of its Scientific Panels, Units and Scientific Committee. OpenFoodTox is an open source toxicological database, available both for download and data visualisation which provides data for all substances evaluated by EFSA including substance characterisation, links to EFSA's outputs, applicable legislations regulations, and a summary of hazard identification and hazard characterisation data for human health, animal health and ecological assessments. The database has been structured using OECD harmonised templates for reporting chemical test summaries (OHTs) to facilitate data sharing with stakeholders with an interest in chemical risk assessment, such as sister agencies, international scientific advisory bodies, and others. This manuscript provides a description of OpenFoodTox including data model, content and tools to download and search the database. Examples of applications of OpenFoodTox in chemical risk assessment are discussed including new quantitative structure-activity relationship (QSAR) models, integration into tools (OECD QSAR Toolbox and AMBIT-2.0), assessment of environmental footprints and testing of threshold of toxicological concern (TTC) values for food related compounds. Finally, future developments for OpenFoodTox 2.0 include the integration of new properties, such as physico-chemical properties, exposure data, toxicokinetic information; and the future integration within in silico modelling platforms such as QSAR models and physiologically-based kinetic models. Such structured in vivo, in vitro and in silico hazard data provide different lines of evidence which can be assembled, weighed and integrated using harmonised Weight of Evidence approaches to support the use of New Approach Methodologies (NAMs) in chemical risk assessment and the reduction of animal testing.


Assuntos
Inocuidade dos Alimentos , Alimentos , Animais , Bases de Dados Factuais , Humanos , Relação Quantitativa Estrutura-Atividade , Medição de Risco
2.
SAR QSAR Environ Res ; 24(4): 333-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710908

RESUMO

The determination of the potential endocrine disruption (ED) activity of chemicals such as poly/perfluorinated compounds (PFCs) and brominated flame retardants (BFRs) is still hindered by a limited availability of experimental data. Quantitative structure-activity relationship (QSAR) strategies can be applied to fill this data gap, help in the characterization of the ED potential, and screen PFCs and BFRs with a hazardous toxicological profile. This paper proposes the modelling of T4-TTR (thyroxin-transthyretin) competing potency and relative binding potency toward T4 (logT4-REP) of PFCs and BFRs by regression and classification QSAR models. This study is a follow up of a former work, which analysed separately the interaction of BFRs and PFCs with the carrier TTR. The new results demonstrate the possibility of developing robust and predictive QSARs, which include both BFRs and PFCs in the training set, obtaining larger applicability domains than the existing models developed separately for BFRs and PFCs. The selection of modelling molecular descriptors confirms the importance of structural features, such as the aromatic OH or the molecular length, to increase the binding of the studied chemicals to TTR. Additionally, the need of experimental tests for some chemicals, and in particular for some of the BFRs, is highlighted.


Assuntos
Poluentes Ambientais/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Pré-Albumina/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Humanos , Modelos Estatísticos
3.
SAR QSAR Environ Res ; 23(3-4): 207-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22352429

RESUMO

Perfluorinated compounds (PFCs) are a class of emerging pollutants still widely used in different materials as non-adhesives, waterproof fabrics, fire-fighting foams, etc. Their toxic effects include potential for endocrine-disrupting activity, but the amount of experimental data available for these pollutants is limited. The use of predictive strategies such as quantitative structure-activity relationships (QSARs) is recommended under the REACH regulation, to fill data gaps and to screen and prioritize chemicals for further experimentation, with a consequent reduction of costs and number of tested animals. In this study, local classification models for PFCs were developed to predict their T4-TTR (thyroxin-transthyretin) competing potency. The best models were selected by maximizing the sensitivity and external predictive ability. These models, characterized by robustness, good predictive power and a defined applicability domain, were applied to predict the activity of 33 other PFCs of environmental concern. Finally, classification models recently published by our research group for T4-TTR binding of brominated flame retardants and for estrogenic and anti-androgenic activity were applied to the studied perfluorinated chemicals to compare results and to further evaluate the potential for these PFCs to cause endocrine disruption.


Assuntos
Disruptores Endócrinos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Modelos Químicos , Pré-Albumina/metabolismo , Relação Quantitativa Estrutura-Atividade , Hormônios Tireóideos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Retardadores de Chama/farmacologia , Receptores de Estrogênio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...