Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956779

RESUMO

The objective of this study was to develop proliposomal formulations for a poorly bioavailable drug, aliskiren hemifumarate (AKH). A solvent evaporation method was used to prepare proliposomes using different lipids. The lipids of selection were soy phosphatidylcholine (SPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG Na), stearylamine, and cholesterol in various ratios. Proliposomes were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics upon hydration with aqueous phase. In vitro drug release studies were conducted in 0.01 N hydrochloric acid using USP type II dissolution apparatus. Parallel artificial membrane permeation assay (PAMPA) and Caco-2 cell line models were used to study the in vitro drug permeation. Male Sprague-Dawley (SD) rats were used to conduct in vivo pharmacokinetic studies. Among different formulations, proliposomes with drug/DMPC/cholesterol/stearylamine in the ratio of 1:5:0.025:0.050 (w/w/w/w) demonstrated the desired particle size, higher zeta potential, and higher encapsulation efficiency. The PAMPA and Caco-2 cell line experiments showed a significantly higher permeability of AKH with proliposomes as compared to pure AKH. In animal studies, the optimized formulation of proliposomes showed significant improvement in the rate and extent of absorption of AKH. Specifically, following a single oral administration, the relative bioavailability of AKH proliposome formulation was 230% when compared to pure AKH suspension.


Assuntos
Portadores de Fármacos , Lipossomos , Administração Oral , Amidas , Animais , Disponibilidade Biológica , Células CACO-2 , Colesterol , Dimiristoilfosfatidilcolina , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Fumaratos , Humanos , Lipossomos/farmacocinética , Masculino , Tamanho da Partícula , Permeabilidade , Ratos , Ratos Sprague-Dawley
2.
Molecules ; 24(18)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500392

RESUMO

Celastrol (CL), a bioactive compound isolated from Tripterygium wilfordii, has demonstrated bioactivities against a variety of diseases including cancer and obesity. However, its poor water solubility and rapid in vivo clearance limit its clinical applications. To overcome these limitations, nanotechnology has been employed to improve its pharmacokinetic properties. Nanoparticles made of biological materials offer minimal adverse effects while maintaining the efficacy of encapsulated therapeutics. Silk fibroin (SF) solution was prepared successfully by extraction from the cocoons of silkworms, and a final concentration of 2 mg/mL SF solution was used for the preparation of CL-loaded SF nanoparticles (CL-SFNP) by the desolvation method. A stirring speed of 750 rpm and storage time of 20 h at -20 °C resulted in optimized product yield. A high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of CL in rat plasma in terms of selectivity, linearity, intra-/inter-day precision and accuracy, and recovery. No interference was observed in rat plasma. Linearity in the concentration range of 0.05-5 µg/mL was observed with R2 of 0.999. Precision and accuracy values were below the limit of acceptance criteria, i.e., 15% for quality control (QC) samples and 20% for lower limit of quantification (LLOQ) samples. Rats were given intravenous (IV) administration of 1 mg/kg of pure CL in PEG 300 solution or CL-SFNP. The pharmacokinetic profile was improved with CL-SFNP compared to pure CL. Pure CL resulted in a maximum concentration (Cmax) value of 0.17 µg mL-1 at 5 min following administration, whereas that for CL-SFNP was 0.87 µg mL-1 and the extrapolated initial concentrations (C0) were 0.25 and 1.09 µg mL-1, respectively, for pure CL and CL-SFNP. A 2.4-fold increase in total area under the curve (AUC0-inf) (µg h mL-1) was observed with CL-SFNP when compared with pure CL. CL-SFNP demonstrated longer mean residence time (MRT; 0.67 h) than pure CL (0.26 h). In conclusion, the preparation of CL-SFNP was optimized and the formulation demonstrated improved pharmacokinetic properties compared to CL in solution following IV administration.


Assuntos
Fibroínas/química , Triterpenos/administração & dosagem , Triterpenos/farmacocinética , Administração Intravenosa , Animais , Área Sob a Curva , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Masculino , Nanopartículas , Tamanho da Partícula , Triterpenos Pentacíclicos , Ratos , Ratos Sprague-Dawley , Triterpenos/química
3.
AAPS PharmSciTech ; 20(6): 226, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31214813

RESUMO

The objective of the present study was to develop a proliposomal formulation to increase the oral bioavailability of dronedarone hydrochloride (dronedarone HCl) by enhancing solubility, dissolution, and/or intestinal absorption. Proliposomes were prepared by using solvent evaporation method. In this process, different ratios of drug, phospholipids, such as soy phosphatidylcholine (SPC), Phospholipon 90H, hydrogenated egg phosphatidylcholine (HEPC), and dimyristoyl phosphatidylglycerol (DMPG), and cholesterol were used. Physical characterization and in vitro dissolution studies were evaluated for the prepared formulations. In vitro transport across the membrane was carried out using Caco-2 cells. Among all the formulations, the amount of drug released in dissolution was higher with DPF8 formulation (drug:DMPG Na:cholesterol:::1:2:0.2) compared to the pure drug. Also, Caco-2 cell permeability studies resulted in 2.6-fold increase in apparent permeability. Optimized formulation was evaluated in vivo in male Sprague-Dawley rats. After single oral administration of optimized formulation (DPF8), a relative bioavailability of 148.36% was achieved compared to the pure drug. Improved oral bioavailability of dronedarone could be provided by an optimized proliposomal formulation with enhanced solubility, permeability, and oral absorption.


Assuntos
Antiarrítmicos/química , Dronedarona/química , Lipossomos , Administração Oral , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Colesterol , Dronedarona/administração & dosagem , Dronedarona/farmacocinética , Portadores de Fármacos , Composição de Medicamentos , Humanos , Masculino , Tamanho da Partícula , Permeabilidade , Fosfolipídeos , Ratos , Ratos Sprague-Dawley , Solubilidade
4.
Int J Anal Chem ; 2018: 1605950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510578

RESUMO

An accurate, highly sensitive, and precise method for quantitative analysis of tramadol (TMD) and gabapentin (GBP) by high performance liquid chromatography and tandem mass spectrometry in human plasma was proposed and validated successfully using venlafaxine and pregabalin as internal standards (ISTDs), respectively. An aliquot of 200 µL of plasma was mixed with internal standard dilution and extraction was performed by using solid phase extraction (SPE) technique. Peak resolution was achieved on Phenomenex PFP column (50×4.6 mm, 2.6 µm). The total analytical run time was 3.8 min. Both analytes were monitored using multiple reaction monitoring (MRM) scan and the mass spectrometer was operated in positive polarity mode. The method was validated for specificity, sensitivity, precision, accuracy, and other analytical parameters. The results found were satisfactory over the linear calibration range of 1-500 ng/mL and 10-6000 ng/mL for TMD and GBP, respectively. The developed method can be ready to use by scientific community for quantification of analytes in plasma samples from various clinical studies of different dose strengths.

5.
AAPS PharmSciTech ; 19(4): 1802-1809, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29616488

RESUMO

The aim of this study was to develop a proliposomal formulation of lipopeptide antibiotic drug daptomycin (DAP) for oral delivery. Thin film hydration was the selected method for preparation of proliposomes. Different phospholipids including soy-phosphatidylcholine (SPC), hydrogenated egg-phosphatidylcholine (HEPC), and distearoyl-phosphatidylcholine (DSPC) were evaluated in combination with cholesterol. The inclusion of surface charge modifiers in the formulation such as dicetyl phosphate (DCP) and stearylamine (SA) to enhance drug encapsulation was also evaluated. Particle size, surface charge, and encapsulation efficiency were performed on daptomycin-hydrated proliposomes as part of physical characterization. USP type II dissolution apparatus with phosphate buffer (pH 6.8) was used for in vitro drug release studies. Optimized formulation was evaluated for in vivo pharmacokinetics after oral administration to Sprague-Dawley rats. Proliposomes composed of SPC exhibited higher entrapment efficiency than those containing HEPC or DSPC. The highest entrapment efficiency was achieved by positively charged SPC-SA proliposomes, showing an encapsulation efficiency of 92% and a zeta potential of + 28 mV. In vitro drug release of optimized formulation demonstrated efficient drug retention totaling for less than 20% drug release within the first 60 min and only 42% drug release after 2 h. Pharmacokinetic parameters after single oral administration of optimized proliposomal formulation indicated a significant increase in oral bioavailability of DAP administered as SPC-SA proliposomes when compared to drug solution. Based on these results, incorporation of charge modifiers into proliposomes may increase drug loading and proliposomes an attractive carrier for oral delivery of daptomycin.


Assuntos
Daptomicina/administração & dosagem , Daptomicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Lipopeptídeos/administração & dosagem , Lipopeptídeos/farmacocinética , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Disponibilidade Biológica , Daptomicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Lipopeptídeos/química , Lipossomos , Masculino , Tamanho da Partícula , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacocinética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA