Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561052

RESUMO

Sophoridine, which is derived from the Leguminous plant Sophora alopecuroides L., has certain pharmacological activity as a new anticancer drug. Herein, a series of novel N-substituted sophoridine derivatives was designed, synthesized and evaluated with anticancer activity. Through QSAR prediction models, it was discovered that the introduction of a benzene ring as a main pharmacophore and reintroduced into a benzene in para position on the phenyl ring in the novel sophoridine derivatives improved the anticancer activity effectively. In vitro, 28 novel compounds were evaluated for anticancer activity against four human tumor cell lines (A549, CNE-2, HepG-2, and HEC-1-B). In particular, Compound 26 exhibited remarkable inhibitory effects, with an IC50 value of 15.6 µM against HepG-2 cells, surpassing cis-Dichlorodiamineplatinum (II). Molecular docking studies verified that the derivatives exhibit stronger binding affinity with DNA topoisomerase I compared to sophoridine. In addition, 26 demonstrated significant inhibition of DNA Topoisomerase I and could arrest cells in G0/G1 phase. This study provides valuable insights into the design and synthesis of N-substituted sophoridine derivatives with anticancer activity.


Assuntos
Alcaloides , Matrinas , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Quinolizinas , Sophora , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , Quinolizinas/farmacologia , Quinolizinas/síntese química , Quinolizinas/química , Estrutura Molecular , Sophora/química , Alcaloides/farmacologia , Alcaloides/síntese química , Alcaloides/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/síntese química , Indolizinas/farmacologia , Indolizinas/química , Indolizinas/síntese química , DNA Topoisomerases Tipo I/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/síntese química
2.
J Mol Model ; 29(4): 117, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976427

RESUMO

BACKGROUND: Drug discovery processes, such as new drug development, drug synergy, and drug repurposing, consume significant yearly resources. Computer-aided drug discovery can effectively improve the efficiency of drug discovery. Traditional computer methods such as virtual screening and molecular docking have achieved many gratifying results in drug development. However, with the rapid growth of computer science, data structures have changed considerably; with more extensive and dimensional data and more significant amounts of data, traditional computer methods can no longer be applied well. Deep learning methods are based on deep neural network structures that can handle high-dimensional data very well, so they are used in current drug development. RESULTS: This review summarized the applications of deep learning methods in drug discovery, such as drug target discovery, drug de novo design, drug recommendation, drug synergy, and drug response prediction. While applying deep learning methods to drug discovery suffers from a lack of data, transfer learning is an excellent solution to this problem. Furthermore, deep learning methods can extract deeper features and have higher predictive power than other machine learning methods. Deep learning methods have great potential in drug discovery and are expected to facilitate drug discovery development.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Redes Neurais de Computação , Descoberta de Drogas/métodos , Aprendizado de Máquina , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...