Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Photonics ; 14(7): 439-445, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32607125

RESUMO

In-vivo observation of the human retina at the cellular level is crucial to detect the first signs of retinal diseases and properly treat them. Despite the phenomenal advances in adaptive optics (AO) systems, clinical imaging of many retinal cells is still elusive due to the low signal-to-noise ratio induced by transpupillary illumination. We present a transscleral optical phase imaging (TOPI) method, which relies on high-angle oblique illumination of the retina, combined with AO, to enhance cell contrast. Examination of eleven healthy volunteer eyes, without pupil dilation, shows the ability of this method to produce in-vivo images of retinal cells, from the retinal pigment epithelium to the nerve fibre layer. This method also allows the generation of high-resolution label-free ex-vivo phase images of flat-mounted retinas. The 4.4°x 4.4° field-of-view in-vivo images are recorded in less than 10 seconds, opening new avenues in the exploration of healthy and diseased retinas.

2.
Gene Ther ; 19(9): 886-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21993171

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is one of the candidate molecules among neurotrophic factors proposed for a potential treatment of retinitis pigmentosa (RP). It must be administered repeatedly or through sustained releasing systems to exert prolonged neuroprotective effects. In the dystrophic Royal College of Surgeon's (RCS) rat model of RP, we found that endogenous GDNF levels dropped during retinal degeneration time course, opening a therapeutic window for GDNF supplementation. We showed that after a single electrotransfer of 30 µg of GDNF-encoding plasmid in the rat ciliary muscle, GDNF was produced for at least 7 months. Morphometric, electroretinographic and optokinetic analyses highlighted that this continuous release of GDNF delayed photoreceptors (PRs) as well as retinal functions loss until at least 70 days of age in RCS rats. Unexpectedly, increasing the GDNF secretion level accelerated PR degeneration and the loss of electrophysiological responses. This is the first report: (i) demonstrating the efficacy of GDNF delivery through non-viral gene therapy in RP; (ii) establishing the efficacy of intravitreal administration of GDNF in RP associated with a mutation in the retinal pigment epithelium; and (iii) warning against potential toxic effects of GDNF within the eye/retina.


Assuntos
Eletroporação , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Retinose Pigmentar/terapia , Animais , Fator Neurotrófico Ciliar/metabolismo , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Plasmídeos , Ratos , Degeneração Retiniana/terapia
3.
Prog Retin Eye Res ; 29(6): 443-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20398784

RESUMO

Because the eye is protected by ocular barriers but is also easily accessible, direct intravitreous injections of therapeutic proteins allow for specific and targeted treatment of retinal diseases. Low doses of proteins are required in this confined environment and a long time of residency in the vitreous is expected, making the eye the ideal organ for local proteic therapies. Monthly intravitreous injection of Ranibizumab, an anti-VEGF Fab has become the standard of care for patients presenting wet AMD. It has brought the proof of concept that administering proteins into the physiologically low proteic concentration vitreous can be performed safely. Other antibodies, Fab, peptides and growth factors have been shown to exert beneficial effects on animal models when administered within the therapeutic and safe window. To extend the use of such biomolecules in the ophthalmology practice, optimization of treatment regimens and efficacy is required. Basic knowledge remains to be increased on how different proteins/peptides penetrate into the eye and the ocular tissues, distribute in the vitreous, penetrate into the retinal layers and/or cells, are eliminated from the eye or metabolized. This should serve as a basis for designing novel drug delivery systems. The later should be non-or minimally invasive and should allow for a controlled, scalable and sustained release of the therapeutic proteins in the ocular media. This paper reviews the actual knowledge regarding protein delivery for eye diseases and describes novel non-viral gene therapy technologies particularly adapted for this purpose.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas/administração & dosagem , Doenças Retinianas/terapia , Animais , Vias de Administração de Medicamentos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Olho/anatomia & histologia , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Proteínas/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Corpo Vítreo/metabolismo
4.
Gene Ther ; 16(7): 862-73, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19440225

RESUMO

Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.


Assuntos
Corpo Ciliar/metabolismo , Terapia Genética/métodos , Músculo Liso/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Receptores Chamariz do Fator de Necrose Tumoral/biossíntese , Uveíte/terapia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroporação/métodos , Endotoxinas/efeitos adversos , Olho/metabolismo , Feminino , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Imunomodulação , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Óperon Lac/genética , Migração e Rolagem de Leucócitos , Microscopia Confocal , Óxido Nítrico Sintase Tipo II/metabolismo , Plasmídeos , Ratos , Ratos Endogâmicos Lew , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
5.
J Fr Ophtalmol ; 30(10): 1070-88, 2007 Dec.
Artigo em Francês | MEDLINE | ID: mdl-18268450

RESUMO

Numerous drug delivery systems (DDSs) can be used as intraocular tools to provide a sustained and calibrated release for a specific drug. Great progress has been made on the design, biocompatibility, bioavailability, and efficacy of DDSs. Although several of them are undergoing clinical trials, a few are already on the market and could be of a routine use in clinical practice. Moreover, miniaturization of the implants makes them less and less traumatic for the eye tissues and some DDSs are now able to target certain cells or tissues specifically. An overview of ocular implants with therapeutic application potentials is provided.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Implantes de Medicamento , Oftalmopatias/tratamento farmacológico , Olho/efeitos dos fármacos , Animais , Preparações de Ação Retardada , Desenho de Equipamento , Humanos , Lipossomos , Miniaturização , Nanopartículas , Tamanho da Partícula , Polímeros , Próteses e Implantes , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...