Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 11(6): e048142, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187827

RESUMO

OBJECTIVE: To evaluate the dynamics and longevity of the humoral immune response to SARS-CoV-2 infection and assess the performance of professional use of the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike protein IgG antibodies. DESIGN: Nationwide serological study. SETTING: Northern Ireland, UK, May 2020-February 2021. PARTICIPANTS: Plasma samples were collected from a diverse cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations and research studies (n=223) and through a convalescent plasma programme (n=183). Plasma donors (n=101) were followed with sequential samples over 11 months post-symptom onset. MAIN OUTCOME MEASURES: SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2 ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity, estimated using a three-reference standard system to establish a characterised panel of 330 positive and 488 negative SARS-CoV-2 IgG samples. RESULTS: We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post-infection, across a minimum of two laboratory immunoassays. On the known positive cohort, the UK-RTC AbC-19 LFIA showed a sensitivity of 97.58% (95.28% to 98.95%) and on known negatives, showed specificity of 99.59% (98.53 % to 99.95%). CONCLUSIONS: Through comprehensive analysis of a cohort of pre-pandemic and pandemic individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when assessed by EuroImmun ELISA, providing insight to antibody levels at later time points post-infection. We show good laboratory validation performance metrics for the AbC-19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-based setting.


Assuntos
COVID-19 , Imunoglobulina G , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/terapia , Estudos Transversais , Humanos , Imunização Passiva , Imunoensaio , Irlanda do Norte/epidemiologia , SARS-CoV-2 , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
2.
Mol Ther ; 28(8): 1846-1857, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32416058

RESUMO

CRISPR-Cas9 provides a tool to treat autosomal dominant disease by non-homologous end joining (NHEJ) gene disruption of the mutant allele. In order to discriminate between wild-type and mutant alleles, Streptococcus pyogenes Cas9 (SpCas9) must be able to detect a single nucleotide change. Allele-specific editing can be achieved by using either a guide-specific approach, in which the missense mutation is found within the guide sequence, or a protospacer-adjacent motif (PAM)-specific approach, in which the missense mutation generates a novel PAM. While both approaches have been shown to offer allele specificity in certain contexts, in cases where numerous missense mutations are associated with a particular disease, such as TGFBI (transforming growth factor ß-induced) corneal dystrophies, it is neither possible nor realistic to target each mutation individually. In this study, we demonstrate allele-specific CRISPR gene editing independent of the disease-causing mutation that is capable of achieving complete allele discrimination, and we propose it as a targeting approach for autosomal dominant disease. Our approach utilizes natural variants in the target region that contain a PAM on one allele that lies in cis with the causative mutation, removing the constraints of a mutation-dependent approach. Our innovative patient-specific guide design approach takes into account the patient's individual genetic make-up, allowing on- and off-target activity to be assessed in a personalized manner.


Assuntos
Alelos , Sistemas CRISPR-Cas , Edição de Genes , Genes Dominantes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Genômica/métodos , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , RNA Guia de Cinetoplastídeos , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...