Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9946-9957, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571218

RESUMO

We discuss a model of two nonlinear quantum oscillators mutually coupled by linear interaction and continuously driven by external coherent excitation. For such a system, we analyze temporal correlations. We examine the violation of the Leggett-Garg inequality analysing various scenarios of measurements. These scenarios are based on the projection onto different Bell states. We show that the possibility of violation of the Leggett-Garg inequalities is associated with the use of different projectors.

3.
Sci Rep ; 13(1): 5859, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041323

RESUMO

We analyse two quantum systems with hidden parity-time ([Formula: see text]) symmetry: one is an optical device, whereas another is a superconducting microwave-frequency device. To investigate their symmetry, we introduce a damping frame (DF), in which loss and gain terms for a given Hamiltonian are balanced. We show that the non-Hermitian Hamiltonians of both systems can be tuned to reach an exceptional point (EP), i.e., the point in parameter space at which a transition from broken to unbroken hidden [Formula: see text] symmetry takes place. We calculate a degeneracy of a Liouvillian superoperator, which is called the Liouvillian exceptional point (LEP), and show that, in the optical domain, LEP is equivalent to EP obtained from the non-Hermitian Hamiltonian (HEP). We also report breaking the equivalence between LEP and HEP by a non-zero number of thermal photons for the microwave-frequency system.

4.
Sci Rep ; 12(1): 17655, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271120

RESUMO

We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and phononic modes. We refer to this effect as hybrid photon-phonon blockade and show how it can be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, we study boson-number correlations in the photon, phonon, and hybrid modes in linearly coupled microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find such system parameters for which we observe eight types of different combinations of either blockade or tunnelling effects (defined via the sub- and super-Poissonian statistics, respectively) for photons, phonons, and hybrid bosons. In particular, we find that the hybrid photon-phonon blockade can be generated by mixing the photonic and phononic modes which do not exhibit blockade.

5.
Sci Rep ; 10(1): 19906, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199787

RESUMO

We study symmetries of open bosonic systems in the presence of laser pumping. Non-Hermitian Hamiltonians describing these systems can be parity-time ([Formula: see text]) symmetric in special cases only. Systems exhibiting this symmetry are characterised by real-valued energy spectra and can display exceptional points, where a symmetry-breaking transition occurs. We demonstrate that there is a more general type of symmetry, i.e., rotation-time ([Formula: see text]) symmetry. We observe that [Formula: see text]-symmetric non-Hermitian Hamiltonians exhibit real-valued energy spectra which can be made singular by symmetry breaking. To calculate the spectra of the studied bosonic non-diagonalisable Hamiltonians we apply diagonalisation methods based on bosonic algebra. Finally, we list a versatile set rules allowing to immediately identifying or constructing [Formula: see text]-symmetric Hamiltonians. We believe that our results on the [Formula: see text]-symmetric class of bosonic systems and their spectral singularities can lead to new applications inspired by those of the [Formula: see text]-symmetric systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...