Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(1): 388-397, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676923

RESUMO

PURPOSE: MR-guided cardiac catheterization procedures currently use passive tracking approaches to follow a gadolinium-filled catheter balloon during catheter navigation. This requires frequent manual tracking and repositioning of the imaging slice during navigation. In this study, a novel framework for automatic real-time catheter tracking during MR-guided cardiac catheterization is presented. METHODS: The proposed framework includes two imaging modes (Calibration and Runtime). The sequence starts in Calibration mode, in which the 3D catheter coordinates are determined using a stack of 10-20 contiguous saturated slices combined with real-time image processing. The sequence then automatically switches to Runtime mode, where three contiguous slices (acquired with partial saturation), initially centered on the catheter balloon using the Calibration feedback, are acquired continuously. The 3D catheter balloon coordinates are estimated in real time from each Runtime slice stack using image processing. Each Runtime stack is repositioned to maintain the catheter balloon in the central slice based on the prior Runtime feedback. The sequence switches back to Calibration mode if the catheter is not detected. This framework was evaluated in a heart phantom and 3 patients undergoing MR-guided cardiac catheterization. Catheter detection accuracy and rate of catheter visibility were evaluated. RESULTS: The automatic detection accuracy for the catheter balloon during the Calibration/Runtime mode was 100%/95% in phantom and 100%/97 ± 3% in patients. During Runtime, the catheter was visible in 82% and 98 ± 2% of the real-time measurements in the phantom and patients, respectively. CONCLUSION: The proposed framework enabled real-time continuous automatic tracking of a gadolinium-filled catheter balloon during MR-guided cardiac catheterization.


Assuntos
Cateterismo Cardíaco , Gadolínio , Humanos , Cateterismo Cardíaco/métodos , Catéteres , Imagens de Fantasmas , Coração
2.
Front Cardiovasc Med ; 10: 1233093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745095

RESUMO

Introduction: Magnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking. Methods: In this study, an automatic, parameter-free, deep-learning-based post-processing pipeline was developed for real-time detection of the catheter balloon. A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial images for the segmentation of the catheter balloon. Post-processing steps were implemented to guarantee a unique estimate of the catheter tip coordinates. This approach was evaluated retrospectively in 7 patients (6M and 1F, age = 7 ± 5 year) who underwent an MRI-guided right heart catheterization procedure with all images acquired in an orientation unseen during training. Results: The overall accuracy, specificity and sensitivity of the proposed catheter tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively. The computation time of the deep-learning-based segmentation step was ∼10 ms/image, indicating its compatibility with real-time constraints. Conclusion: Deep-learning-based catheter balloon tracking is feasible, accurate, parameter-free, and compatible with real-time conditions. Online integration of the technique and its evaluation in a larger patient cohort are now warranted to determine its benefit during MRI-guided cardiac catheterization.

3.
Magn Reson Med ; 89(6): 2242-2254, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763898

RESUMO

PURPOSE: To develop a motion-robust reconstruction technique for free-breathing cine imaging with multiple averages. METHOD: Retrospective motion correction through multiple average k-space data elimination (REMAKE) was developed using iterative removal of k-space segments (from individual k-space samples) that contribute most to motion corruption while combining any remaining segments across multiple signal averages. A variant of REMAKE, termed REMAKE+, was developed to address any losses in SNR due to k-space information removal. With REMAKE+, multiple reconstructions using different initial conditions were performed, co-registered, and averaged. Both techniques were validated against clinical "standard" signal averaging reconstruction in a static phantom (with simulated motion) and 15 patients undergoing free-breathing cine imaging with multiple averages. Quantitative analysis of myocardial sharpness, blood/myocardial SNR, myocardial-blood contrast-to-noise ratio (CNR), as well as subjective assessment of image quality and rate of diagnostic quality images were performed. RESULTS: In phantom, motion artifacts using "standard" (RMS error [RMSE]: 2.2 ± 0.5) were substantially reduced using REMAKE/REMAKE+ (RMSE: 1.5 ± 0.4/1.0 ± 0.4, p < 0.01). In patients, REMAKE/REMAKE+ led to higher myocardial sharpness (0.79 ± 0.09/0.79 ± 0.1 vs. 0.74 ± 0.12 for "standard", p = 0.004/0.04), higher image quality (1.8 ± 0.2/1.9 ± 0.2 vs. 1.6 ± 0.4 for "standard", p = 0.02/0.008), and a higher rate of diagnostic quality images (99%/100% vs. 94% for "standard"). Blood/myocardial SNR for "standard" (94 ± 30/33 ± 10) was higher vs. REMAKE (80 ± 25/28 ± 8, p = 0.002/0.005) and tended to be lower vs. REMAKE+ (105 ± 33/36 ± 12, p = 0.02/0.06). Myocardial-blood CNR for "standard" (61 ± 22) was higher vs. REMAKE (53 ± 19, p = 0.003) and lower vs. REMAKE+ (69 ± 24, p = 0.007). CONCLUSIONS: Compared to "standard" signal averaging reconstruction, REMAKE and REMAKE+ provide improved myocardial sharpness, image quality, and rate of diagnostic quality images.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Respiração , Movimento (Física) , Artefatos
4.
Magn Reson Imaging ; 83: 125-132, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419611

RESUMO

PURPOSE: Real-time spiral phase contrast MR (PCMR) enables rapid free-breathing assessment of flow. Target spatial and temporal resolutions require high acceleration rates often leading to long reconstruction times. Here we propose a deep artifact suppression framework for fast and accurate flow quantification. METHODS: U-Nets were trained for deep artifact suppression using 520 breath-hold gated spiral PCMR aortic datasets collected in congenital heart disease patients. Two spiral trajectories (uniform and perturbed) and two losses (Mean Absolute Error -MAE- and average structural similarity index measurement -SSIM-) were compared in synthetic data in terms of MAE, peak SNR (PSNR) and SSIM. Perturbed spiral PCMR was prospectively acquired in 20 patients. Stroke Volume (SV), peak mean velocity and edge sharpness measurements were compared to Compressed Sensing (CS) and Cartesian reference. RESULTS: In synthetic data, perturbed spiral consistently outperformed uniform spiral for the different image metrics. U-Net MAE showed better MAE and PSNR while U-Net SSIM showed higher SSIM based metrics. In-vivo, there were no significant differences in SV between any of the real-time reconstructions and the reference standard Cartesian data. However, U-Net SSIM had better image sharpness and lower biases for peak velocity when compared to U-Net MAE. Reconstruction of 96 frames took ~59 s for CS and 3.9 s for U-Nets. CONCLUSION: Deep artifact suppression of complex valued images using an SSIM based loss was successfully demonstrated in a cohort of congenital heart disease patients for fast and accurate flow quantification.


Assuntos
Artefatos , Cardiopatias Congênitas , Coração/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Microscopia de Contraste de Fase
5.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946422

RESUMO

The wide availability of satellite data from many distributors in different domains of science has provided the opportunity for the development of new and improved methodologies to aid the analysis of environmental problems and to support more reliable estimations and forecasts. Moreover, the rapid development of specialized technologies in satellite instruments provides the opportunity to obtain a wide spectrum of various measurements. The purpose of this research is to use publicly available remote sensing product data computed from geostationary, polar and near-polar satellites and radar to improve space-time modeling and prediction of precipitation on Crete island in Greece. The proposed space-time kriging method carries out the fusion of remote sensing data with data from ground stations that monitor precipitation during the hydrological period 2009/10-2017/18. Precipitation observations are useful for water resources, flood and drought management studies. However, monitoring stations are usually sparse in regions with complex terrain, are clustered in valleys, and often have missing data. Satellite precipitation data are an attractive alternative to observations. The fusion of the datasets in terms of the space-time residual kriging method exploits the auxiliary satellite information and aids in the accurate and reliable estimation of precipitation rates at ungauged locations. In addition, it represents an alternative option for the improved modeling of precipitation variations in space and time. The obtained results were compared with the outcomes of similar works in the study area.

6.
Magn Reson Imaging ; 72: 1-7, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562742

RESUMO

Three-dimensional cine imaging provides a wealth of information about cardiac anatomy and function, but its use in the clinical environment is limited because data acquisition is very time consuming. In this work, a free-breathing 3D whole-heart cine imaging framework was developed using a time-efficient stack of spirals trajectory and accelerated reconstruction. Two suitable view ordering methods are considered with different spacing between k-space readouts in the partition dimension: uniform and tiny golden ratio based. A simulation study suggested the latter did not present any benefits in terms of similarity to the true image. The proposed method was subsequently tested on 10 prospective subjects and compared with conventional multi-slice breath-hold imaging. Image quality was evaluated using objective and subjective scores and ventricular measurements were compared to assess clinical accuracy. Image quality was lower in the proposed technique than in breath-hold images but good agreement was found in clinically relevant ventricular measurements. In addition, the proposed method was fast to acquire, required minimal planning and provided full anatomical coverage with isotropic resolution.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética , Adulto , Suspensão da Respiração , Simulação por Computador , Feminino , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
7.
Magn Reson Med ; 83(6): 2077-2091, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31703158

RESUMO

PURPOSE: we implemented a golden-angle spiral phase contrast sequence. A commonly used uniform density spiral and a new 'perturbed' spiral that produces more incoherent aliases were assessed. The aim was to ascertain whether greater incoherence enabled more accurate Compressive Sensing reconstruction and superior measurement of flow and velocity. METHODS: A range of 'perturbed' spiral trajectories based on a uniform spiral trajectory were formulated. The trajectory that produced the most noise-like aliases was selected for further testing. For in-silico and in-vivo experiments, data was reconstructed using total Variation L1 regularisation in the spatial and temporal domains. In-silico, the reconstruction accuracy of the 'perturbed' golden spiral was compared to uniform density golden-angle spiral. For the in-vivo experiment, stroke volume and peak mean velocity were measured in 20 children using 'perturbed' and uniform density golden-angle spiral sequences. These were compared to a reference standard gated Cartesian sequence. RESULTS: In-silico, the perturbed spiral acquisition produced more accurate reconstructions with less temporal blurring (NRMSE ranging from 0.03 to 0.05) than the uniform density acquisition (NRMSE ranging from 0.06 to 0.12). This translated in more accurate results in-vivo with no significant bias in the peak mean velocity (bias: -0.1, limits: -4.4 to 4.1 cm/s; P = 0.98) or stroke volume (bias: -1.8, limits: -9.4 to 5.8 ml, P = 0.19). CONCLUSION: We showed that a 'perturbed' golden-angle spiral approach is better suited to Compressive Sensing reconstruction due to more incoherent aliases. This enabled accurate real-time measurement of flow and peak velocity in children.


Assuntos
Compressão de Dados , Interpretação de Imagem Assistida por Computador , Criança , Humanos , Microscopia de Contraste de Fase
8.
Magn Reson Med ; 81(1): 90-101, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802643

RESUMO

PURPOSE: In this study, a golden ratio stack of spiral (GRASS) sequence that used both golden step and golden angle ordering was implemented. The aim was to demonstrate that GRASS acquisitions could be flexibly reconstructed as both cardiac-gated and time-resolved angiograms. METHODS: Image quality of time-resolved and cardiac-gated reconstructions of the GRASS sequence were compared to 3 conventional stack of spirals (SoS) acquisitions in an in silico model. In 10 patients, the GRASS sequence was compared to conventional breath hold angiography (BH-MRA) in terms of image quality and for vessel measurement. Vessel measurements were also compared to cine images. RESULTS: In the cardiac-gated in silico model, the image quality of GRASS was superior to regular and golden-angle with regular step SoS approaches. In the time-resolved model, GRASS image quality was comparable to the golden-angle with regular step technique and superior to regular SoS acquisitions. In patients, there was no difference in qualitative image scores between GRASS and BH-MRA, but SNR was lower. There was good agreement in vessel measurements between the GRASS reconstructions and conventional MR techniques (BH-MRA: 29.8 ± 5.6 mm, time-resolved GRASS-MRA: 29.9 ± 5.4 mm, SSFP diastolic: 29.4 ± 5.8 mm, cardiac-gated GRASS-MRA diastolic: 29.5 ± 5.5 mm, P > 0.87). CONCLUSION: We have demonstrated that the GRASS acquisition enables flexible reconstruction of the same raw data as both time-resolved and cardiac-gated volumes. This may enable better interrogation of anatomy in congenital heart disease.


Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Angiografia por Ressonância Magnética , Adulto , Algoritmos , Aorta/diagnóstico por imagem , Artefatos , Criança , Diástole , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Infusões Intravenosas , Imagem Cinética por Ressonância Magnética , Movimento (Física) , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
J Cardiovasc Magn Reson ; 20(1): 79, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518390

RESUMO

BACKGROUND: Real-time cardiovascular magnetic resonance (CMR) assessment of ventricular volumes and function enables data acquisition during free-breathing. The requirement for high spatiotemporal resolution in children necessitates the use of highly accelerated imaging techniques. METHODS: A novel real-time balanced steady state free precession (bSSFP) spiral sequence reconstructed using Compressed Sensing (CS) was prospectively validated against the breath-hold clinical standard for assessment of ventricular volumes in 60 children with congenital heart disease. Qualitative image scoring, quantitative image quality, as well as evaluation of biventricular volumes was performed. Standard BH and real-time measures were compared using the paired t-test and agreement for volumetric measures were evaluated using Bland Altman analysis. RESULTS: Acquisition time for the entire short axis stack (~ 13 slices) using the spiral real-time technique was ~ 20 s, compared to ~ 348 s for the standard breath hold technique. Qualitative scores reflected more residual aliasing artefact (p < 0.001) and lower edge definition (p < 0.001) in spiral real-time images than standard breath hold images, with lower quantitative edge sharpness and estimates of image contrast (p < 0.001). There was a small but statistically significant (p < 0.05) overestimation of left ventricular (LV) end-systolic volume (1.0 ± 3.5 mL), and underestimation of LV end-diastolic volume (- 1.7 ± 4.6 mL), LV stroke volume (- 2.6 ± 4.8 mL) and LV ejection fraction (- 1.5 ± 3.0%) using the real-time technique. We also observed a small underestimation of right ventricular stroke volume (- 1.8 ± 4.9 mL) and ejection fraction (- 1.4 ± 3.7%) using the real-time imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and real-time sequences. CONCLUSIONS: Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction showed good agreement for quantification of biventricular metrics in children with heart disease, despite slightly lower image quality. This technique holds the potential for free breathing data acquisition, with significantly shorter scan times in children.


Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda , Função Ventricular Direita , Adolescente , Fatores Etários , Suspensão da Respiração , Criança , Feminino , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
10.
J Physiol ; 594(15): 4297-307, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27027401

RESUMO

KEY POINTS: The human stress response activates the autonomic nervous system and endocrine systems to increase performance during environmental challenges. This response is usually beneficial, improving the chance of overcoming environmental challenges, but costs resources such as energy. Humans and other animals are known to adapt their responses to acute stress when they are stimulated chronically, presumably to optimise resource utilisation. Characterisation of these adaptations has been limited. Using advanced imaging techniques, we show that cardiovascular and endocrine physiology, reflective of energy utilisation during acute stress, and energy storage (fat) differ between the sexes when they are exposed to chronic stress. We examine possible evolutionary explanations for these differences, related to energy use, and point out how these physiological differences could underpin known disparities between the sexes in their risk of important cardiometabolic disorders such as obesity and cardiovascular disease. ABSTRACT: Obesity and associated diseases, such as cardiovascular disease, are the dominant human health problems in the modern era. Humans develop these conditions partly because they consume excess energy and exercise too little. Stress might be one of the factors contributing to these disease-promoting behaviours. We postulate that sex-specific primordial energy optimisation strategies exist, which developed to help cope with chronic stress but have become maladaptive in modern societies, worsening health. To demonstrate the existence of these energy optimisation strategies, we recruited 88 healthy adults with varying adiposity and chronic stress exposure. Cardiovascular physiology at rest and during acute stress (Montreal Imaging Stress Task), and body fat distribution were measured using advanced magnetic resonance imaging methods, together with endocrine function, cardiovascular energy use and cognitive performance. Potential confounders such as lifestyle, social class and employment were accounted for. We found that women exposed to chronic stress had lower adiposity, greater acute stress cardiovascular responses and better cognitive performance. Conversely, chronic stress-exposed men had greater adiposity and lower cardiovascular responses to acute stress. These results provide initial support for our hypothesis that differing sex-specific energy conservation strategies exist. We propose that these strategies have initially evolved to benefit humans but are now maladaptive and increase the risk of disorders such as obesity, especially in men exposed to chronic stress.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Estresse Psicológico/metabolismo , Adiposidade , Adolescente , Adulto , Cognição , Feminino , Hemodinâmica , Humanos , Hidrocortisona/metabolismo , Masculino , Pessoa de Meia-Idade , Saliva/química , Caracteres Sexuais , Adulto Jovem
11.
J Magn Reson Imaging ; 44(4): 1003-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26929195

RESUMO

PURPOSE: To develop and validate a rapid breath-hold tissue phase mapping (TPM) sequence. MATERIALS AND METHODS: The sequence was based on an efficient uniform density spiral acquisition, combined with data acceleration. A novel acquisition and reconstruction strategy enabled combination of UNFOLD (2×) and SENSE (3×): UNFOLD-ed SENSE. The sequence was retrospectively cardiac-gated, and a graphics processing unit (GPU) was used for rapid "online" reconstruction. The optimal UNFOLD parameters for the data were calculated using an in silico model. The technique was validated on a 1.5T MR scanner in 15 patients with known aortic valve disease, against a respiratory self-navigated free-breathing TPM technique. Quantitative image quality measures (velocity-to-noise and edge sharpness) were made as well as calculation of longitudinal, radial, and tangential myocardial velocities in the left ventricle. RESULTS: The proposed breath-hold TPM data took eight heartbeats to acquire. The breath-hold TPM images had significantly higher edge sharpness (P = 0.0014) than the self-navigated TPM images, but with significantly lower velocity-to-noise ratio (P < 0.0001). There was excellent agreement (r > 0.94) in the longitudinal, radial, and tangential velocities between the self-navigated data and the proposed breath-hold TPM sequence. CONCLUSION: We demonstrate the feasibility of using spiral UNFOLD-ed SENSE to measure myocardial velocities using a rapid breath-hold spiral TPM sequence. This novel technique might enable accurate measurement of myocardial velocities, in a short scan time, which is especially important in a busy clinical workflow. J. MAGN. RESON. IMAGING 2016;44:1003-1009.


Assuntos
Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Suspensão da Respiração , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/fisiopatologia , Imagem Cinética por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Técnicas de Imagem de Sincronização Cardíaca/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Physiol Meas ; 36(5): N85-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25903482

RESUMO

The purposes of this study were: (1) to evaluate feasibility and acceptability of MRI augmented cardiopulmonary exercise testing (MR-CPET) in healthy adults and (2) to test whether peak values obtained at conventional and MR-CPET correlate and to demonstrate variation in peak oxygen consumption (VO2) relates to both peak cardiac output (CO) and peak oxygen extraction (ΔcO2). Seventeen healthy adults underwent CPET and MR-CPET using an MR compatible ergometer and CPET system customised for MR use. Continuous aortic flow measurement used a validated UNFOLD-SENSE spiral phase contrast magnetic resonance (PCMR) sequence.Fifteen of 17 volunteers completed exercise; exclusions were due to claustrophobia and inability to effectively master exercise technique. Measures of acceptability were lower but still satisfactory for MR-CPET.There were strong correlations between conventional and MR-CPET for peak VO2 (r = 0.94, p < 0.001); VCO2 (r = 0.87, p < 0.001) and VE (r = 0.88, p < 0.001).Multiple linear regression analysis demonstrated peak CO and ΔcO2 were independent predictors of peak VO2 measured during MR-CPET (ß = 0.73 and 0.38 p < 0.0001) and conventional CPET (ß = 0.78, 0.28 p < 0.0001).MR-CPET is feasible, acceptable and demonstrates physiology not apparent with conventional CPET. MR-CPET allows differentiation of the contributions of CO and ΔcO2 to variation in peak VO2. We believe that this will be useful in understanding the origin of reduced exercise capacity in cardiac disease.


Assuntos
Teste de Esforço/métodos , Imageamento por Ressonância Magnética , Adulto , Débito Cardíaco , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Masculino , Consumo de Oxigênio
13.
Magn Reson Med ; 73(2): 749-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24554494

RESUMO

PURPOSE: To develop a real-time phase contrast MR sequence with high enough temporal resolution to assess cardiac time intervals. METHODS: The sequence utilized spiral trajectories with an acquisition strategy that allowed a combination of temporal encoding (Unaliasing by fourier-encoding the overlaps using the temporal dimension; UNFOLD) and parallel imaging (Sensitivity encoding; SENSE) to be used (UNFOLDed-SENSE). An in silico experiment was performed to determine the optimum UNFOLD filter. In vitro experiments were carried out to validate the accuracy of time intervals calculation and peak mean velocity quantification. In addition, 15 healthy volunteers were imaged with the new sequence, and cardiac time intervals were compared to reference standard Doppler echocardiography measures. For comparison, in silico, in vitro, and in vivo experiments were also carried out using sliding window reconstructions. RESULTS: The in vitro experiments demonstrated good agreement between real-time spiral UNFOLDed-SENSE phase contrast MR and the reference standard measurements of velocity and time intervals. The protocol was successfully performed in all volunteers. Subsequent measurement of time intervals produced values in keeping with literature values and good agreement with the gold standard echocardiography. Importantly, the proposed UNFOLDed-SENSE sequence outperformed the sliding window reconstructions. CONCLUSION: Cardiac time intervals can be successfully assessed with UNFOLDed-SENSE real-time spiral phase contrast. Real-time MR assessment of cardiac time intervals may be beneficial in assessment of patients with cardiac conditions such as diastolic dysfunction.


Assuntos
Artefatos , Ventrículos do Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Adulto , Idoso , Algoritmos , Sistemas Computacionais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
14.
Stress ; 16(4): 369-76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23425242

RESUMO

In contrast to heavy alcohol consumption, which is harmful, light to moderate drinking has been linked to reduced cardiovascular morbidity and mortality. Effects on lipid status or clotting do not fully explain these benefits. Exaggerated cardiovascular responses to mental stress are detrimental to cardiovascular health. We hypothesized that habitual alcohol consumption might reduce these responses, with potential benefits. Advanced magnetic resonance techniques were used to accurately measure cardiovascular responses to an acute mental stressor (Montreal Imaging Stress Task) in 88 healthy adults (∼1:1 male:female). Salivary cortisol and task performance measures were used to assess endocrine and cognitive responses. Habitual alcohol consumption and confounding factors were assessed by questionnaire. Alcohol consumption was inversely related to responses of heart rate (HR) (r = -0.31, p = 0.01), cardiac output (CO) (r = -0.32, p = 0.01), vascular resistance (r = 0.25, p = 0.04) and mean blood pressure (r = -0.31, p = 0.01) provoked by stress, but not to stroke volume (SV), or arterial compliance changes. However, high alcohol consumers had greater cortisol stress responses, compared to moderate consumers (3.5 versus 0.7 nmol/L, p = 0.04). Cognitive measures did not differ. Findings were not explained by variations in age, sex, social class, ethnicity, physical activity, adrenocortical activity, adiposity, smoking, menstrual phase and chronic stress. Habitual alcohol consumption is associated with reduced cardiac responsiveness during mental stress, which has been linked to lower risk of hypertension and vascular disease. Consistent with established evidence, our findings suggest a mechanism by which moderate alcohol consumption might reduce cardiovascular disease, but not high consumption, where effects such as greater cortisol stress responses may negate any benefits.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Débito Cardíaco , Doenças Cardiovasculares , Sistema Cardiovascular/efeitos dos fármacos , Cognição , Etanol/farmacologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hidrocortisona/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Saliva/química
15.
J Magn Reson Imaging ; 36(6): 1477-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22745017

RESUMO

PURPOSE: To demonstrate the feasibility of real-time phase contrast magnetic resonance (PCMR) assessment of continuous cardiac output with a heterogeneous (CPU/GPU) system for online image reconstruction. MATERIALS AND METHODS: Twenty healthy volunteers underwent aortic flow examination during exercise using a real-time spiral PCMR sequence. Acquired data were reconstructed in online fashion using an iterative sensitivity encoding (SENSE) algorithm implemented on an external computer equipped with a GPU card. Importantly, data were sent back to the scanner console for viewing. A multithreaded CPU implementation of the real-time PCMR reconstruction was used as a reference point for the online GPU reconstruction assessment and validation. A semiautomated segmentation and registration algorithm was applied for flow data analysis. RESULTS: There was good agreement between the GPU and CPU reconstruction (-0.4 ± 0.8 mL). There was a significant speed-up compared to the CPU reconstruction (15×). This translated into the flow data being available on the scanner console ≈9 seconds after acquisition finished. This compares to an estimated time using the CPU implementation of 83 minutes. CONCLUSION: Our heterogeneous image reconstruction system provides a base for translation of complex MRI algorithms into clinical workflow. We demonstrated its feasibility using real-time PCMR assessment of continuous cardiac output as an example.


Assuntos
Aorta/fisiologia , Débito Cardíaco/fisiologia , Gráficos por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/instrumentação , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Algoritmos , Aorta/anatomia & histologia , Velocidade do Fluxo Sanguíneo/fisiologia , Sistemas Computacionais , Desenho de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
16.
PLoS One ; 7(6): e39143, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745709

RESUMO

Obesity and mental stress are potent risk factors for cardiovascular disease but their relationship with each other is unclear. Resilience to stress may differ according to adiposity. Early studies that addressed this are difficult to interpret due to conflicting findings and limited methods. Recent advances in assessment of cardiovascular stress responses and of fat distribution allow accurate assessment of associations between adiposity and stress responsiveness. We measured responses to the Montreal Imaging Stress Task in healthy men (N = 43) and women (N = 45) with a wide range of BMIs. Heart rate (HR) and blood pressure (BP) measures were used with novel magnetic resonance measures of stroke volume (SV), cardiac output (CO), total peripheral resistance (TPR) and arterial compliance to assess cardiovascular responses. Salivary cortisol and the number and speed of answers to mathematics problems in the task were used to assess neuroendocrine and cognitive responses, respectively. Visceral and subcutaneous fat was measured using T(2) (*)-IDEAL. Greater BMI was associated with generalised blunting of cardiovascular (HR:ß = -0.50 bpm x unit(-1), P = 0.009; SV:ß = -0.33 mL x unit(-1), P = 0.01; CO:ß = -61 mL x min(-1) x unit(-1), P = 0.002; systolic BP:ß = -0.41 mmHg x unit(-1), P = 0.01; TPR:ß = 0.11 WU x unit(-1), P = 0.02), cognitive (correct answers: r = -0.28, P = 0.01; time to answer: r = 0.26, P = 0.02) and endocrine responses (cortisol: r = -0.25, P = 0.04) to stress. These associations were largely determined by visceral adiposity except for those related to cognitive performance, which were determined by both visceral and subcutaneous adiposity. Our findings suggest that adiposity is associated with centrally reduced stress responsiveness. Although this may mitigate some long-term health risks of stress responsiveness, reduced performance under stress may be a more immediate negative consequence.


Assuntos
Adiposidade/fisiologia , Sistema Cardiovascular/metabolismo , Cognição/fisiologia , Estresse Psicológico/fisiopatologia , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...