Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 25(1): 21-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18855196

RESUMO

Halide-permeable xerogel films prepared from sols containing 50 mol% aminopropyltriethoxysilane (APTES)/50 mol% tetraethoxysilane (TEOS) or 10 mol% APTES/90 mol% TEOS and 0.015 M selenoxide or telluride catalyst in the sol gave reduced settlement of cypris larvae of the barnacle Balanus amphitrite and larvae of the tubeworm Hydroides elegans in the presence of artificial seawater (ASW) and hydrogen peroxide (5-100 microM) relative to glass controls. Settlement of Ulva zoospores was lower on both the 50 mol% APTES/50 mol% TEOS and 10 mol% APTES/90 mol% TEOS xerogel formulations in comparison with glass controls with or without the added catalyst. The 50 mol% APTES/50 mol%TEOS xerogel containing telluride catalyst gave reduced settlement of Ulva zoospores in the presence of 100 microM H(2)O(2) in ASW compared with the same coating without added peroxide. Scanning electron microscopy and XPS data suggest that exposure to H(2)O(2) does not lead to chemical or morphological changes on the xerogel surface.


Assuntos
Peróxido de Hidrogênio/metabolismo , Poliquetos/efeitos dos fármacos , Silanos/farmacologia , Thoracica/efeitos dos fármacos , Ulva/efeitos dos fármacos , Animais , Catálise , Géis/química , Géis/farmacologia , Vidro , Peróxido de Hidrogênio/farmacologia , Biologia Marinha , Poliquetos/crescimento & desenvolvimento , Propilaminas , Propriedades de Superfície , Thoracica/crescimento & desenvolvimento , Ulva/crescimento & desenvolvimento
2.
Biofouling ; 24(3): 177-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18348008

RESUMO

The increasing needs for environmental friendly antifouling coatings have led to investigation of new alternatives for replacing copper and TBT-based paints. In this study, results are presented from larval settlement assays of the barnacle Amphibalanus (= Balanus) amphitrite on planar, interdigitated electrodes (IDE), having 8 or 25 mum of inter-electrode spacing, upon the application of pulsed electric fields (PEF). Using pulses of 100 ms in duration, 200 Hz in frequency and 10 V in pulse amplitude, barnacle settlement below 5% was observed, while similar IDE surfaces without pulse application had an average of 40% settlement. The spacing between the electrodes did not affect cyprid settlement. Assays with lower PEF amplitudes did not show significant settlement inhibition. On the basis of the settlement assays, the calculated minimum energy requirement to inhibit barnacle settlement is 2.8 W h m(-2).


Assuntos
Eletricidade , Thoracica/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Biologia Marinha
3.
Biofouling ; 21(1): 59-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16019392

RESUMO

Hybrid sol-gel-derived xerogel films prepared from 45/55 (mol ratio) n-propyltrimethoxysilane (C3-TMOS)/tetramethylorthosilane (TMOS), 2/98 (mol ratio) bis[3-(trimethoxysilyl)propyl]-ethylenediamine (enTMOS)/tetraethylorthosilane (TEOS), 50/50 (mol ratio) n-octyltriethoxysilane (C8-TEOS)/TMOS, and 50/50 (mol ratio) 3,3,3-trifluoropropyltrimethoxysilane (TFP-TMOS)/TMOS were found to inhibit settlement of zoospores of the marine fouling alga Ulva (syn. Enteromorpha) relative to settlement on acid-washed glass and give greater release of settled zoospores relative to glass upon exposure to pressure from a water jet. The more hydrophobic 50/50 C8-TEOS/TMOS xerogel films had the lowest critical surface tension by comprehensive contact angle analysis and gave significantly greater release of 8-day Ulva sporeling biomass after exposure to turbulent flow generated by a flow channel than the other xerogel surfaces or glass. The 50/50 C8-TEOS/TMOS xerogel was also a fouling release surface for juveniles of the tropical barnacle Balanus amphitrite. X-ray photon electron data indicated that the alkylsilyl residues of the C3-TMOS-, C8-TEOS-, and TFP-TMOS-containing xerogels were located on the surface of the xerogel films (in a vacuum), which contributes to the film hydrophobicity. Similarly, the amine-containing silyl residues of the enTMOS/TEOS films were located at the surface of the xerogel films, which contributes to the more hydrophilic character and increased critical surface tension of these films.


Assuntos
Silanos/química , Silanos/farmacologia , Esporos/fisiologia , Thoracica/fisiologia , Ulva/fisiologia , Animais , Bioensaio , Géis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...