Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(11): 9759-9771, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38820338

RESUMO

HER2 overexpression and amplification have been identified as oncogenic drivers, and the development of therapies to treat tumors harboring these markers has received considerable attention. Activation of HER2 signaling and subsequent cell growth can also be induced by HER2 mutations, including the common YVMA insertion in exon 20 within the kinase domain. Enhertu is currently the only approved treatment for HER2 mutant tumors in NSCLC. TKIs tested in this space have suffered from off-target activity, primarily due to EGFRWT inhibition or attenuated activity against HER2 mutants. The goal of this work was to identify a TKI that would provide robust inhibition of oncogenic HER2WT and HER2 mutants while sparing EGFRWT activity. Herein, we describe the development of a potent, covalent inhibitor of HER2WT and the YVMA insertion mutant while providing oral bioavailability and avoiding the inhibition of EGFRWT.


Assuntos
Inibidores de Proteínas Quinases , Receptor ErbB-2 , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Descoberta de Drogas , Mutação , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Ratos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo
2.
Drug Metab Dispos ; 52(6): 498-507, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38604728

RESUMO

Cytochrome P450 (CYP)4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze ω-hydroxylation and metabolize ω3 and ω6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer, and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 expression and purification of the active catalytic form. SIGNIFICANCE STATEMENT: In breast cancer, an unmet need is the availability of highly effective therapeutic agents, especially for triple negative breast cancer. The relevance of the work summarized in this mini-review is that it identifies a new potential drug target, CYP4Z1, and discusses ways in which the gene product's catalytic activity might be modulated in order to combat this malignancy and limit its spread.


Assuntos
Neoplasias da Mama , Família 4 do Citocromo P450 , Humanos , Família 4 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Inibidores das Enzimas do Citocromo P-450/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37956555

RESUMO

Heme B is a critical prosthetic group for the function of numerous proteins including the cytochrome P450 (CYP) family of enzymes. CYP enzymes are involved in the metabolism of endogenous and xenobiotic molecules that are of central interest in drug development. Formation of reactive metabolites by CYPs can lead to heme modification and destruction of the enzyme. The structure of the adducted heme can provide key information on the mechanism of inactivation, which is of great interest during preclinical drug discovery. Historically, techniques to extract the modified heme or protoporphyrin IX species involved harsh extraction conditions and esterification of propionate groups to aid chromatography. We have developed a simplified extraction method and LC/MS chromatography system that does not require derivatization to quantify heme B and identify modified heme B species from multiple CYP-containing matrices. The method uses mass defect filter triggered data dependent MS2 scans to rapidly identify heme and protoporphyrin IX adducts. These methods may also be useful for the analysis of other heme variants and hemoproteins.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Heme/análise , Heme/química , Heme/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Protoporfirinas/metabolismo
4.
J Org Chem ; 88(6): 3970-3974, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857298

RESUMO

Establishing the two stereocenters in the benzothiazepine ring of linerixibat (GSK2330672) has been a long-standing problem at GSK. Our solution rests on an episulfonium-controlled Ritter reaction followed by a sulfoxide-directed reduction. A rationale for both steps is based on a mixture of literature precedent and computational experiments. Transition state modeling suggests the sulfoxide-directed reduction proceeds through electronic repulsion between the lone pair of electrons on sulfur and the incoming borohydride anion.

5.
Org Lett ; 24(49): 9123-9129, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36475829

RESUMO

Photoredox-transition metal dual catalysis provides a unique platform for constructing sp3-rich chemical matter. Here, we report a nickel-catalyzed cross-coupling of commercially available or easily prepared redox-active NHP azetidine-2-carboxylates with commercially available heteroaryl iodides to yield 2-heteroaryl azetidines. This "off-the-shelf" approach yielded products amenable to diversification giving access to novel saturated heterocyclic scaffolds useful for medicinal chemistry programs. An alternative mechanism for Hantzsch ester within nickel-catalyzed cross-coupling of heteroaryl halides and α-amino radicals is also presented.


Assuntos
Azetidinas , Níquel , Química Farmacêutica , Catálise , Oxirredução
6.
J Org Chem ; 87(4): 1961-1970, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876939

RESUMO

A novel oxidative activation of a thiolactam was developed for the preparation of methyltriazolo[1,4]benzodiazepine in a single step. A sulfenic acid (R-SOH) was proposed as the activated intermediate with the concurrent formation of acetylhydrazone from acethydrazide and cyclocondensation to the triazole. A version of the method with 35% peracetic acid was scaled up to 40 kg as a part of the new route for the synthesis of BET inhibitor molibresib (GSK525762). The thiolactam was prepared from commercially available (2-amino-5-methoxyphenyl)(4-chlorophenyl)methanone in two steps in 66% yield. The concise four-step synthesis delivered 52 kg of molibresib of >99.9% ee in an overall 41% yield from the ketone. The condition for the methyltriazole was mild and free of racemization of the sensitive stereocenter. The oxidative method, with several advantages to the known methods, should be applicable to the synthesis of alkyltriazoles from other thiolactams and acylhydrazines.


Assuntos
Antineoplásicos , Benzodiazepinas , Oxirredução , Estresse Oxidativo
7.
Am J Hum Genet ; 108(9): 1735-1751, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314704

RESUMO

CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Mutação de Sentido Incorreto , Medicamentos sob Prescrição/metabolismo , Saccharomyces cerevisiae/enzimologia , Xenobióticos/metabolismo , Sítios de Ligação , Citocromo P-450 CYP2C9/química , Citocromo P-450 CYP2C9/genética , Ensaios Enzimáticos , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenitoína/química , Polimorfismo Genético , Medicamentos sob Prescrição/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Transgenes , Varfarina/química , Varfarina/metabolismo , Xenobióticos/química
8.
Xenobiotica ; 51(8): 901-915, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993844

RESUMO

8-[(1H-1,2,3-benzotriazol-1-yl)amino]octanoic acid (8-BOA) was recently identified as a selective and potent mechanism-based inactivator (MBI) of breast cancer-associated CYP4Z1 and exhibited favourable inhibitory activity in vitro, thus meriting in vivo characterization.The pharmacokinetics and metabolism of 8-BOA in rats was examined after a single IV bolus dose of 10 mg/kg. A biphasic time-concentration profile resulted in relatively low clearance and a prolonged elimination half-life.The major circulating metabolites identified in plasma were products of ß-oxidation; congeners losing two and four methylene groups accounted for >50% of metabolites by peak area. The -(CH2)2 product was characterized previously as a CYP4Z1 MBI and so represents an active metabolite that may contribute to the desired pharmacological effect.Ex vivo analysis of total CYP content in rat liver and kidney microsomes showed that off-target CYP inactivation was minimal; liver microsomal probe substrate metabolism also demonstrated low off-target inactivation. Standard clinical chemistries provided no indication of acute toxicity.In silico simulations using the free concentration of 8-BOA in plasma suggested that the in vivo dose used here may effectively inactivate CYP4Z1 in a xenografted tumour.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Animais , Caprilatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos
9.
J Pharmacol Exp Ther ; 374(2): 233-240, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32423989

RESUMO

CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.


Assuntos
Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Povos Indígenas/genética , Alaska/etnologia , Escherichia coli/genética , Expressão Gênica , Células HEK293 , Humanos , Proteólise , Tripsina/metabolismo
10.
J Med Chem ; 63(9): 4824-4836, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302132

RESUMO

Mammary-tissue-restricted cytochrome P450 4Z1 (CYP4Z1) has garnered interest for its potential role in breast cancer progression. CYP4Z1-dependent metabolism of arachidonic acid preferentially generates 14,15-epoxyeicosatrienoic acid (14,15-EET), a metabolite known to influence cellular proliferation, migration, and angiogenesis. In this study, we developed time-dependent inhibitors of CYP4Z1 designed as fatty acid mimetics linked to the bioactivatable pharmacophore, 1-aminobenzotriazole (ABT). The most potent analogue, 8-[(1H-benzotriazol-1-yl)amino]octanoic acid (7), showed a 60-fold lower shifted-half-maximal inhibitory concentration (IC50) for CYP4Z1 compared to ABT, efficient mechanism-based inactivation of the enzyme evidenced by a KI = 2.2 µM and a kinact = 0.15 min-1, and a partition ratio of 14. Furthermore, 7 exhibited low off-target inhibition of other CYP isozymes. Finally, low micromolar concentrations of 7 inhibited 14,15-EET production in T47D breast cancer cells transfected with CYP4Z1. This first-generation, selective mechanism-based inhibitor (MBI) will be a useful molecular tool to probe the biochemical role of CYP4Z1 and its association with breast cancer.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 4 do Citocromo P450/antagonistas & inibidores , Ácidos Graxos/farmacologia , Triazóis/farmacologia , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Desenho de Fármacos , Ácidos Graxos/síntese química , Ácidos Graxos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Triazóis/síntese química , Triazóis/metabolismo
11.
Arch Biochem Biophys ; 679: 108216, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31801692

RESUMO

CYP4B1 is an enigmatic mammalian cytochrome P450 monooxygenase acting at the interface between xenobiotic and endobiotic metabolism. A prominent CYP4B1 substrate is the furan pro-toxin 4-ipomeanol (IPO). Our recent investigation on metabolism of IPO related compounds that maintain the furan functionality of IPO while replacing its alcohol group with alkyl chains of varying structure and length revealed that, in addition to cytotoxic reactive metabolite formation (resulting from furan activation) non-cytotoxic ω-hydroxylation at the alkyl chain can also occur. We hypothesized that substrate reorientations may happen in the active site of CYP4B1. These findings prompted us to re-investigate oxidation of unsaturated fatty acids and fatty alcohols with C9-C16 carbon chain length by CYP4B1. Strikingly, we found that besides the previously reported ω- and ω-1-hydroxylations, CYP4B1 is also capable of α-, ß-, γ-, and δ-fatty acid hydroxylation. In contrast, fatty alcohols of the same chain length are exclusively hydroxylated at ω, ω-1, and ω-2 positions. Docking results for the corresponding CYP4B1-substrate complexes revealed that fatty acids can adopt U-shaped bonding conformations, such that carbon atoms in both arms may approach the heme-iron. Quantum chemical estimates of activation energies of the hydrogen radical abstraction by the reactive compound 1 as well as electron densities of the substrate orbitals led to the conclusion that fatty acid and fatty alcohol oxidations by CYP4B1 are kinetically controlled reactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Ácidos Graxos/metabolismo , Álcoois Graxos/metabolismo , Hidrocarboneto de Aril Hidroxilases/química , Citocromos b5/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Oxirredução , Conformação Proteica
12.
Chem Res Toxicol ; 32(12): 2488-2498, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31799839

RESUMO

Cytochrome P450 4B1 (CYP4B1) has been explored as a candidate enzyme in suicide gene systems for its ability to bioactivate the natural product 4-ipomeanol (IPO) to a reactive species that causes cytotoxicity. However, metabolic limitations of IPO necessitate discovery of new "pro-toxicant" substrates for CYP4B1. In the present study, we examined a series of synthetically facile N-alkyl-3-furancarboxamides for cytotoxicity in HepG2 cells expressing CYP4B1. This compound series maintains the furan warhead of IPO while replacing its alcohol group with alkyl chains of varying length (C1-C8). Compounds with C3-C6 carbon chain lengths showed similar potency to IPO (LD50 ≈ 5 µM). Short chain analogs (<3 carbons) and long chain analogs (>6 carbons) exhibited reduced toxicity, resulting in a parabolic relationship between alkyl chain length and cytotoxicity. A similar parabolic relationship was observed between alkyl chain length and reactive intermediate formation upon trapping of the putative enedial as a stable pyrrole adduct in incubations with purified recombinant rabbit CYP4B1 and common physiological nucleophiles. These parabolic relationships reflect the lower affinity of shorter chain compounds for CYP4B1 and increased ω-hydroxylation of the longer chain compounds by the enzyme. Furthermore, modest time-dependent inhibition of CYP4B1 by N-pentyl-3-furancarboxamide was completely abolished when trapping agents were added, demonstrating escape of reactive intermediates from the enzyme after bioactivation. An insulated CYP4B1 active site may explain the rarely observed direct correlation between adduct formation and cell toxicity reported here.


Assuntos
Amidas/toxicidade , Hidrocarboneto de Aril Hidroxilases/metabolismo , Furanos/toxicidade , Ativação Metabólica , Amidas/síntese química , Amidas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/química , Domínio Catalítico , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Furanos/síntese química , Furanos/metabolismo , Células Hep G2 , Humanos , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Coelhos , Relação Estrutura-Atividade , Terpenos/química , Terpenos/toxicidade
14.
J Org Chem ; 84(8): 4680-4694, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30339385

RESUMO

A convergent eight-stage synthesis of the boron-containing NS5B inhibitor GSK8175 is described. The previous route involves 13 steps in a completely linear sequence, with an overall 10% yield. Key issues include a multiday SNAr arylation of a secondary sulfonamide using HMPA as solvent, multiple functional group interconversions after all of the carbon atoms are installed (including a Sandmeyer halogenation), use of carcinogenic chloromethyl methyl ether to install a protecting group late in the synthesis, and an unreliable Pd-catalyzed Miyaura borylation as the penultimate step. We have devised an orthogonal approach using a Chan-Lam coupling between a halogenated aryl pinacol boronate ester and an aryl methanesulfonamide. This reaction is performed using a cationic Cu(I) precatalyst, which can be easily generated in situ using KPF6 as a halide abstractor. High-throughput screening revealed a new Pd catalyst system to effect the penultimate borylation chemistry using simple monodentate phosphine ligands, with PCyPh2 identified as optimal. Reaction progress analysis of this borylation indicated likely mass-transfer rate limitations under standard conditions using KOAc as the base. We have devised a K2CO3/pivalic acid system as an alternative, which dramatically outperforms the standard conditions. This new synthesis proceeds in eight stages with a 20% overall yield.


Assuntos
Antivirais/farmacologia , Boratos/farmacologia , Ácidos Borônicos/farmacologia , Paládio/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Boratos/síntese química , Boratos/química , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Catálise , Estrutura Molecular , Proteínas não Estruturais Virais/metabolismo
15.
J Pharmacol Exp Ther ; 368(2): 308-316, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30409834

RESUMO

A potential CYP4B1 suicide gene application in engineered T-cell treatment of blood cancers has revived interest in the use of 4-ipomeanol (IPO) in gene-directed enzyme prodrug therapy, in which disposition of the administered compound may be critical. IPO contains one chiral center at the carbon bearing a secondary alcohol group; it was of interest to determine the effect of stereochemistry on 1) CYP4B1-mediated bioactivation and 2) (UGT)-mediated glucuronidation. First, (R)-IPO and (S)-IPO were synthesized and used to assess cytotoxicity in HepG2 cells expressing rabbit CYP4B1 and re-engineered human CYP4B1, where the enantiomers were found to be equipotent. Next, a sensitive UPLC-MS/MS assay was developed to measure the IPO-glucuronide diastereomers and product stereoselectivity in human tissue microsomes. Human liver and kidney microsomes generated (R)- and (S)-IPO-glucuronide diastereomers in ratios of 57:43 and 79:21, respectively. In a panel of 13 recombinantly expressed UGTs, UGT1A9 and UGT2B7 were the major isoforms responsible for IPO glucuronidation. (R)-IPO-glucuronide diastereoselectivity was apparent with each recombinant UGT, except UGT2B15 and UGT2B17, which favored the formation of (S)-IPO-glucuronide. Incubations with IPO and the UGT1A9-specific chemical inhibitor niflumic acid significantly decreased glucuronidation in human kidney, but only marginally in human liver microsomes, consistent with known tissue expression patterns of UGTs. We conclude that IPO glucuronidation in human kidney is mediated by UGT1A9 and UGT2B7. In human liver, it is mediated primarily by UGT2B7 and, to a lesser extent, UGT1A9 and UGT2B15. Overall, the lack of pronounced stereoselectivity for IPO's bioactivation in CYP4B1-transfected HepG2 cells, or for hepatic glucuronidation, suggests the racemate is an appropriate choice for use in suicide gene therapies.


Assuntos
Glucuronídeos/metabolismo , Microssomos/metabolismo , Terpenos/química , Terpenos/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Microssomos/efeitos dos fármacos , Estereoisomerismo , Terpenos/toxicidade , Toxinas Biológicas/toxicidade
16.
Drug Metab Dispos ; 45(12): 1364-1371, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29018033

RESUMO

CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC50 ∼15 µM). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE.


Assuntos
Neoplasias da Mama/metabolismo , Família 4 do Citocromo P450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Láuricos/metabolismo , Amidinas/farmacologia , Família 4 do Citocromo P450/antagonistas & inibidores , Família 4 do Citocromo P450/química , Família 4 do Citocromo P450/isolamento & purificação , Progressão da Doença , Humanos , Hidroxilação/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1 , Espectrometria de Massas , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
17.
Cell Tissue Bank ; 18(4): 573-584, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28799106

RESUMO

Common terminal sterilization methods are known to alter the natural structure and properties of soft tissues. One approach to providing safe grafts with preserved biological properties is the combination of a validated chemical sterilization process followed by an aseptic packaging process. This combination of processes is an accepted method for production of sterile healthcare products as described in ANSI/AAMI ST67:2011. This article describes the validation of the peracetic acid and ethanol-based (PAAE) chemical sterilization process for allograft dermal tissues at the Musculoskeletal Transplant Foundation (MTF, Edison, NJ). The sterilization capability of the PAAE solution used during routine production of aseptically processed dermal tissue forms was determined based on requirements of relevant ISO standards, ISO 14161:2009 and ISO 14937:2009. The resistance of spores of Bacillus subtilis, Clostridium sporogenes, Mycobacterium terrae, Pseudomonas aeruginosa, Enterococcus faecium, and Staphylococcus aureus to the chemical sterilization process employed by MTF was determined. Using a worst-case scenario testing strategy, the D value was calculated for the most resistant microorganism, Bacillus. The 12D time parameter determined the minimum time required to achieve a SAL of 10-6. Microbiological performance qualification demonstrated a complete kill of 106 spores at just a quarter of the full cycle time. The validation demonstrated that the PAAE sterilization process is robust, achieves sterilization of allograft dermal tissue to a SAL 10-6, and that in combination with aseptic processing secures the microbiological safety of allograft dermal tissue while avoiding structural and biochemical tissue damage previously observed with other sterilization methods such as ionizing irradiation.


Assuntos
Aloenxertos/efeitos dos fármacos , Ácido Peracético/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Esterilização , Aloenxertos/citologia , Bacillus subtilis/efeitos dos fármacos , Transplante Ósseo/efeitos adversos , Osso e Ossos/efeitos dos fármacos , Humanos , Esterilização/métodos , Transplante Homólogo/métodos
18.
Protein Eng Des Sel ; 30(3): 205-216, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073960

RESUMO

Human CYP4B1, a cytochrome P450 monooxygenase predominantly expressed in the lung, inefficiently metabolizes classical CYP4B1 substrates, such as the naturally occurring furan pro-toxin 4-ipomeanol (4-IPO). Highly active animal forms of the enzyme convert 4-IPO to reactive alkylating metabolite(s) that bind(s) to cellular macromolecules. By substitution of 13 amino acids, we restored the enzymatic activity of human CYP4B1 toward 4-IPO and this modified cDNA is potentially valuable as a suicide gene for adoptive T-cell therapies. In order to find novel pro-toxins, we tested numerous furan analogs in in vitro cell culture cytotoxicity assays by expressing the wild-type rabbit and variants of human CYP4B1 in human liver-derived HepG2 cells. To evaluate the CYP4B1 substrate specificities and furan analog catalysis, we optimized the N-terminal sequence of the CYP4B1 variants by modification/truncation and established their heterologous expression in Escherichia coli (yielding 70 and 800 nmol·l-1 of recombinant human and rabbit enzyme, respectively). Finally, spectral binding affinities and oxidative metabolism of the furan analogs by the purified recombinant CYP4B1 variants were analyzed: the naturally occurring perilla ketone was found to be the tightest binder to CYP4B1, but also the analog that was most extensively metabolized by oxidative processes to numerous non-reactive reaction products.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Escherichia coli , Expressão Gênica , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/isolamento & purificação , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Células Hep G2 , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Coelhos , Especificidade por Substrato
19.
Mol Ther Nucleic Acids ; 5(8): e352, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27741222

RESUMO

A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection.

20.
Mol Ther ; 23(5): 943-951, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648264

RESUMO

Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial.


Assuntos
Terapia Antirretroviral de Alta Atividade , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Transdução Genética , Animais , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Imunofenotipagem , Contagem de Linfócitos , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/efeitos da radiação , Subpopulações de Linfócitos T/virologia , Transgenes , Condicionamento Pré-Transplante , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...