Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 137(18): 184703, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23163385

RESUMO

We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temperature conditions. Our simulations show anisotropic structure and dynamics of the confined water phase in directions parallel and perpendicular to the graphite plate. The magnitude of these anisotropies depends on the slit width H. Confined water shows "solid-like" structure and slow dynamics for the water layers near the plates. The mean square displacements (MSDs) and velocity autocorrelation functions (VACFs) for directions parallel and perpendicular to the graphite plates are calculated. By increasing the confinement distance from H = 7 Å to H = 20 Å, the MSD increases and the behavior of the VACF indicates that the confined water changes from solid-like to liquid-like dynamics. If the initial density of the water phase is set up using geometric criteria (i.e., distance between the graphite plates), large pressures (in the order of ~10 katm), and large pressure anisotropies are established within the water. By decreasing the density of the water between the confined plates to about 0.9 g cm(-3), bubble formation and restructuring of the water layers are observed.


Assuntos
Grafite/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Água/química , Anisotropia , Estrutura Molecular
2.
Phys Chem Chem Phys ; 13(19): 8826-37, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21455505

RESUMO

Systematic molecular dynamics simulations are used to study the structure, dynamics and transport properties of the ionic liquids composed of the tetra-butylphosphonium ([TBP](+), or [P(C(4)H(9))(4)](+)) cation with six amino acid ([AA](-)) anions. The structural features of these ionic liquids were characterized by calculating the partial site-site radial distribution functions, g(r), and computing the dihedral angle distribution of n-butyl side chains in the [TBP](+) cations. The dynamics of the ionic liquids are described by studying the velocity autocorrelation function (VACF) and the mean-square displacement (MSD) for the centers of mass of the ions at different temperatures. The ionic diffusion coefficients and the electrical conductivities were evaluated from both the Einstein and Green-Kubo methods. The cross-correlation terms in the electric-current autocorrelation functions, which are an indication of the ion pair correlations, are investigated. The cationic transference numbers were also estimated to study the contributions of the anions and cations to the transport of charge in these ionic liquids. We determined the role of the amino acid anion structures on the dynamical behavior and the transport coefficients of this family of ionic liquids. In general, the MSD and self-diffusion coefficients of the relatively heavier non-planar [TBP](+) cations are smaller than those of the lighter amino acid anions. Introducing polar functional groups (acid or amide) in the side chain of [AA](-) decreases the diffusion coefficient and electrical conductivity of AAILs. The major factors for determining the magnitude of the transport coefficients are the chemical functionality and the length of the alkyl side chain of the [AA](-) anion of these [TBP][AA] ionic liquids.


Assuntos
Aminoácidos/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Compostos Organofosforados/química , Estrutura Molecular
3.
J Chem Phys ; 132(4): 044507, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20113049

RESUMO

We use molecular dynamics simulations to study the structure, dynamics, and details of the mechanism of congruent melting of the equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide with benzene, [emim][NTf(2)]C(6)H(6). Changes in the molecular arrangement, radial distribution functions, and the dynamic behavior of species are used to detect the solid to liquid transition, show an indication of the formation of polar islands by aggregating of the ions in the liquid phase, and characterize the melting process. The predicted enthalpy of melting DeltaH(m)=38+/-2 kJ mol(-1) for the equimolar inclusion mixture at 290 K is in good agreement with the differential scanning calorimetry experimental results of 42+/-2 kJ mol(-1). The dynamics of the ions and benzene molecules were studied in the solid and liquid states by calculating the mean-square displacement (MSD) and the orientational autocorrelation function. The MSD plots show strong association between ion pairs of the ionic liquid in the inclusion mixture. Indeed, the presence of a stoichiometric number of benzene molecules does not affect the nearest neighbor ionic association between [emim](+) and [NTf(2)](-), but increases the MSDs of both cations and anions compared to pure liquid [emim][NTf(2)], showing that second shell ionic associations are weakened. We monitored the rotational motion of the alkyl chain sides of imidazolium cations and also calculated the activation energy for rotation of benzene molecules about their C(6) symmetry axes in their lattice sites prior to melting.

4.
J Chem Phys ; 130(1): 014703, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19140627

RESUMO

A systematic molecular dynamics study is performed to determine the dynamics and transport properties of 12 room-temperature ionic liquids family with 1-alkyl-3-methylimidazolium cation, [amim](+) (alkyl = methyl, ethyl, propyl, and butyl), with counterions, PF(6)(-), NO(3)(-), and Cl(-). The goal of the work is to provide molecular level understanding of the transport coefficients of these liquids as guidance to experimentalists on choosing anion and cation pairs to match required properties of ionic liquid solvents. In the earlier paper (Part I), we characterized the dynamics of ionic liquids and provided a detailed comparison of the diffusion coefficients for each ion using the Einstein and Green-Kubo formulas. In this second part, other transport properties of imidazolium salts are calculated, in particular, the electrical conductivity is calculated from the Nernst-Einstein and Green-Kubo formulas. The viscosity is also determined from the Stokes-Einstein relation. The results of the calculated transport coefficients are consistent with the previous computational and experimental studies of imidazolium salts. Generally, the simulations give electrical conductivity lower than experiment while the viscosity estimate is higher than experiment. Within the same cation family, the ionic liquids with the NO(3)(-) counterion have the highest electrical conductivities: sigma[NO(3)](-)>sigma[PF(6)](-)>sigma[Cl](-). The [dmim][X] series, due to their symmetric cationic structure and good packing and the [bmim][X] series due to higher inductive van der Waals interactions of [bmim](+), have the highest viscosities in these ionic liquid series. Our simulations show that the major factors determining the magnitude of the self-diffusion, electrical conductivity, and viscosity are the geometric shape, ion size, and the delocalization of the ionic charge in the anion.

5.
J Chem Phys ; 129(22): 224508, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19071929

RESUMO

Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3)](-) > [PF(6)](-) > [Cl](-). The [dmim](+) has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...