Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(18): 185804, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31952069

RESUMO

In this work the investigation of in-plane uniaxial magnetic anisotropy induced by the morphology due to ion beam erosion of Si(1 0 0) has been done. Ion beam erosion at an oblique angle of incidence generates a well-ordered nanoripple structure on the Si surface and ripple propagates in a direction normal to ion beam erosion. Permalloy thin films grown on such periodic nanopatterns show a strong uniaxial magnetic anisotropy with easy axis of magnetization in a direction normal to the ripple wave vector. The strength of uniaxial magnetic anisotropy is found to be high for the low value of ripple wavelength; it is decreasing with increasing value of ripple wavelength. Similarly, the strength of uniaxial magnetic anisotropy decreases with increasing Permalloy film thickness. Grazing incidence small angle x-ray scattering data reveals an anisotropic growth of Permalloy thin films with preferential orientation of grains in the direction normal to the ripple wave vector. Permalloy thin film growth is highly conformal with the film surface replicating the substrate ripple morphology up to a film thickness of 50 nm has been observed. Correlation between observed uniaxial magnetic anisotropy to surface modification has been addressed.

2.
Langmuir ; 32(12): 2928-36, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26940230

RESUMO

We report synchrotron-based small-angle X-ray scattering experiments on a template-grown porous silica matrix (Santa Barbara Amorphous-15) upon in situ sorption of fluorinated pentane C5F12 along with volumetric gas sorption isotherm measurements. Within the mean-field model of Saam and Cole for vapor condensation in cylindrical pores, a nitrogen and C5F12 sorption isotherm is well described by a bimodal pore radius distribution dominated by meso- and micropores with 3.4 and 1.6 nm mean radius, respectively. In the scattering experiments, two different periodicities become evident. One of them (d1 = 11.5 nm) reflects the next nearest neighbor distance in a 2D-hexagonal lattice of tubular mesopores. A second periodicity (d2 = 11.4 nm) found during in situ sorption and freezing experiments is traced back to a superstructure along the cylindrical mesopores. It is compatible with periodic pore corrugations found in electron tomograms of empty SBA-15 by Gommes et al. ( Chem. Mater. 2009, 21, 1311 - 1317). A Rayleigh-Plateau instability occurring at the cylindrical blockcopolymer micelles characteristic of the SBA-15 templating process quantitatively accounts for the superstructure and thus the spatial periodicity of the pore wall corrugation. The consequences of this peculiar morphological feature on the spatial arrangement of C5F12, in particular the formation of periodically arranged nanobubbles (or voids) upon adsorption, desorption, and freezing of liquids, are discussed in terms of capillary bridge formation and cavitation in tubular but periodically corrugated pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...