Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37515244

RESUMO

Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.


Assuntos
Vírus da Hepatite E , Hepatite E , Vacinas Virais , Animais , Humanos , Feminino , Suínos , Gravidez , Coelhos , Ratos , Ovinos , Hepatite E/epidemiologia , Hepatite E/prevenção & controle , Europa (Continente)/epidemiologia , Infecção Persistente , Vacinas Sintéticas , Zoonoses
2.
Vaccines (Basel) ; 9(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579228

RESUMO

Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries. The purpose of this study is to develop an enzyme immunoassay (EIA) for the detection of anti-hepatitis E virus IgG in pig serum, using plant-produced recombinant HEV-3 ORF2 as an antigenic coating protein, and also to evaluate the sensitivity and specificity of this assay. A recombinant HEV-3 ORF2 110-610_6his capsid protein, transiently expressed by pEff vector in Nicotiana benthamiana plants was used to develop an in-house HEV EIA. The plant-derived HEV-3 ORF2 110-610_6his protein proved to be antigenically similar to the HEV ORF2 capsid protein and it can self-assemble into heterogeneous particulate structures. The optimal conditions for the in-house EIA (iEIA) were determined as follows: HEV-3 ORF2 110-610_6his antigen concentration (4 µg/mL), serum dilution (1:50), 3% BSA as a blocking agent, and secondary antibody dilution (1:20 000). The iEIA developed for this study showed a sensitivity of 97.1% (95% Cl: 89.9-99.65) and a specificity of 98.6% (95% Cl: 92.5-99.96) with a Youden index of 0.9571. A comparison between our iEIA and a commercial assay (PrioCHECK™ Porcine HEV Ab ELISA Kit, ThermoFisher Scientific, MA, USA) showed 97.8% agreement with a kappa index of 0.9399. The plant-based HEV-3 ORF2 iEIA assay was able to detect anti-HEV IgG in pig serum with a very good agreement compared to the commercially available kit.

3.
Animals (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872096

RESUMO

(1) Background: Hepatitis E virus (HEV) is a causative agent of acute viral hepatitis, predominantly transmitted by the fecal-oral route. In developed countries, HEV is considered to be an emerging pathogen since the number of autochthonous cases is rising. Hepatitis E is a viral disease with a proven zoonotic potential for some of its genotypes. The main viral reservoirs are domestic pigs and wild boar. Consumption of undercooked meat, as well as occupational exposure, are key factors for the spread of HEV. In order to evaluate the risks of future viral evolution, a detailed examination of the ecology and distribution of the virus is needed. The aim of the present study is to investigate the prevalence of anti-HEV IgG Ab in domestic pigs and wild boar in Bulgaria; (2) Methods: In this study, during the period of three years between 2017 and 2019, 433 serum samples from 19 different pig farms and 1 slaughterhouse were collected and analyzed. In addition, 32 samples from wild boar were also collected and analyzed during the 2018-2019 hunting season. All samples were analyzed by commercial indirect ELISA; (3) Results: Overall, HEV seroprevalence was 60% (95% CI 42.7-77.1) in domestic pigs and 12.5% (4/32) in wild boar. The observed seroprevalence of the slaughter-aged pigs was 73.65% (95% Cl 58.7-87.3). Prevalence in domestic pigs was significantly higher in the samples collected during 2019 (98% (95% Cl 96.1-99.9)) compared to those collected during 2017 (45.33% (95% CI 2.7-87.3)) and 2018 (38.46% (95% CI 29.1-49.7.); (4) Conclusions: Our findings suggest that domesticated pigs and wild boar might be the reason for the increased HEV transmission across Bulgaria. The genotypic characterization of HEV found in pigs, wild boar and humans will give a more accurate view of the zoonotic transmission of this virus.

4.
PLoS One ; 12(5): e0177007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28481911

RESUMO

African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.


Assuntos
Adenoviridae/genética , Vírus da Febre Suína Africana/genética , Febre Suína Africana/imunologia , Antígenos Virais/imunologia , Suínos/imunologia , Vírus da Febre Suína Africana/imunologia , Animais , Antígenos Virais/genética , Western Blotting , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos
5.
Ann Lab Med ; 37(4): 313-319, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28445010

RESUMO

BACKGROUND: Hepatitis E virus (HEV) causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. There have been recent reports on the zoonotic spread of the virus, and several animal species, primarily pigs, have been recognized as reservoirs of HEV. Because of its possible spread, there is an urgent need of a method for the cost-effective production of HEV proteins that can be used as diagnostic antigens for the serological detection of anti-HEV antibodies. METHODS: The HEV open reading frame (ORF)2 protein was purified from plant tissue by using immobilized metal-anion chromatography (IMAC). The recombinant protein was used to develop an in-house ELISA for testing anti-HEV antibodies in both human and swine sera. Thirty-six serum samples collected from patients with serologically proven HEV infection with commercial kits were tested for anti-HEV IgG antibodies by using the plant-expressed protein. Forty-five serum samples collected from apparently healthy pigs in Bulgarian farms were also tested. RESULTS: We confirmed the transient expression and purification of a truncated version of the HEV genotype 3 capsid protein in Nicotiana benthamiana and its usefulness as a diagnostic antigen. ELISA showed the presence of anti-HEV IgG antibodies in 29 of the 36 human samples. The in-house ELISA showed anti-HEV IgG antibodies in 34 of the 45 pigs. CONCLUSIONS: We describe a method for the production of HEV ORF2 protein in N. benthamiana and the usefulness of this protein for the serological detection of anti-HEV antibodies in both humans and swine.


Assuntos
Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Vírus da Hepatite E/metabolismo , Nicotiana/metabolismo , Proteínas Virais/imunologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Ensaio de Imunoadsorção Enzimática , Genótipo , Humanos , Imunoglobulina G/sangue , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...