Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124523, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820811

RESUMO

Plasmon-driven reactions on plasmonic nanoparticles (NPs) occur under significantly different conditions from those of classical organic synthesis and provide a promising pathway for enhancing the efficiency of various chemical processes. However, these reactions can also have undesirable effects, such as 4-mercaptophenylboronic acid (MPBA) deboronation. MPBA chemisorbs well to Ag NPs through its thiol group and can subsequently bind to diols, enabling the detection of various biological structures by surface-enhanced Raman scattering (SERS), but not upon its deboronation. To avoid this reaction, we investigated the experimental conditions of MPBA deboronation on Ag NPs by SERS. Our results showed that the level of deboronation strongly depends on both the morphology of the system and the excitation laser wavelength and power. In addition, we detected not only the expected products, namely thiophenol and biphenyl-4,4-dithiol, but also 4-nitrothiophenol (NTP). The crucial reagent for NTP formation was an oxidation product of hydroxylamine hydrochloride, the reduction agent used in Ag NP synthesis. Ultimately, this reaction was replicated by adding NaNO2 to the system, and its progress was monitored as a function of the laser power, thereby identifying a new reaction of plasmon-driven -B(OH)2 substitution for -NO2.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122454, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780740

RESUMO

The enhancement of Raman signals of molecules localized in the vicinity of plasmonic nanoparticles, known as surface-enhanced Raman scattering (SERS) effect, is strongly influenced by the selected excitation wavelength. The optimal excitation wavelength in SERS measurements is given by the position of the surface plasmon extinction (SPE) band of the studied system. Even a small change of the SPE band intensity, position and/or shape during the measurement may influence the SERS signal significantly. In this work, we prepared several systems of Ag nanoparticles, which were used for the demonstration how the information about SPE changes can be obtained by multivariate statistical analysis (factor analysis; FA) from SERS spectral sets, and employed in more precise and more comprehensive interpretation of the results. In non-aggregated Ag colloidal systems measured at the excitation wavelength of 445 nm, SPE band changes could be monitored by the analysis of water stretching vibration together with the vibrations in the fingerprint region. The FA of the water stretching band region was shown to provide unique information on both arrangement and disarrangement of water molecules in the vicinity of Ag NPs during the time evolution of these SERS active systems. In addition, the FA of the fingerprint region helped to monitor a rapid metalation of meso-tetrakis(N-methyl-4-pyridyl)porphine in etched SERS systems with Ag+ ions released from the NPs surface. In aggregated Ag colloidal systems measured at the excitation wavelength of 785 nm, the FA of SERS spectral sets enabled us to reveal the contribution of the 2nd electromagnetic enhancement to the overall SERS signal. The reliability of our conclusions was verified by comparing the results obtained from FA of SERS spectral sets with the data obtained from the parallel SPE measurements of the studied systems.

3.
J Phys Chem B ; 125(46): 12847-12858, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34758623

RESUMO

Metal 2,2':6',2″-terpyridine (tpy) complexes are readily used as building blocks in metallo-supramolecular polymers that stand out for their photophysical properties in solar energy assemblies. Furthermore, Resonance Raman (RR) excitation profiles are sensitive indicators of the electronic properties of chromophores. Previously, using RR spectroscopy, we studied the [Fe(tpy)2]2+ complex and metallo-supramolecular polymers formed by tpy derivatives and Fe(II) ions. Here, we compare RR spectra of iron (Fe(II)) complexes with 4'-substituted tpy ligands─[Fe(4'-R-tpy)2]2+, with R = H (1a), Cl (2a), 4-chlorophenyl (3a), and 2-thienyl (4a) to describe changes in their electronic structure after functionalization. By combining theoretical calculations, RR, and UV/vis spectra, we elucidated differences in the RR excitation profiles of 1a, 2a, and 4a complexes. In all Raman modes, complexes 1a and 2a showed maximal enhancement only at 532 nm excitation, whereas complex 4a exhibited maximal enhancement selectively at either 532 or 633 nm excitations. Based on our calculations, the mixed metal/ligand character of the highest occupied molecular orbital (HOMO) of 4a complex manifests itself through selective enhancement of vibration modes, mainly localized on the 2-thienyl unit at 633 nm excitation, which may explain the unique behavior of this complex. Therefore, complex 4a is a prospective candidate for further detailed photophysical explorations toward developing sensitizers for solar cells.


Assuntos
Eletrônica , Vibração , Compostos Ferrosos , Ligantes , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...