Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869058

RESUMO

Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.

2.
Antiviral Res ; 208: 105449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265804

RESUMO

Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still needed. The protein-protein interaction between polymerase subunits PA and PB1 is one such possible target. We recently identified a modified decapeptide derived from the N-terminus of the PB1 subunit with high affinity for the C-terminal part of the PA subunit. Here, we optimized its amino acid hotspots to maintain the inhibitory potency and greatly increase peptide solubility. This allowed thermodynamic characterization of peptide binding to PA. Solving the X-ray structure of the peptide-PA complex provided structural insights into the interaction. Additionally, we optimized intracellular delivery of the peptide using a bicyclic strategy that led to improved inhibition in cell-based assays.


Assuntos
Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Ligação Proteica , RNA Polimerase Dependente de RNA , Peptídeos/farmacologia , Peptídeos/metabolismo , Termodinâmica
3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299354

RESUMO

The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.


Assuntos
Endonucleases/antagonistas & inibidores , Luteolina/síntese química , Luteolina/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Antivirais/síntese química , Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores
4.
Molecules ; 26(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673017

RESUMO

Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.


Assuntos
Farmacorresistência Viral/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Subunidades Proteicas/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/antagonistas & inibidores , Cristalografia por Raios X , Vírus da Influenza A/efeitos dos fármacos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Teoria Quântica , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , Termodinâmica , Proteínas Virais/química , Proteínas Virais/metabolismo
5.
Angew Chem Int Ed Engl ; 60(18): 10172-10178, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33616279

RESUMO

STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.


Assuntos
Proteínas de Membrana/química , Nucleotídeos Cíclicos/química , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular
6.
Biochemistry ; 60(8): 607-620, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586948

RESUMO

STING protein (stimulator of interferon genes) plays an important role in the innate immune system. A number of potent compounds regulating its activity have been reported, mostly derivatives of cyclic dinucleotides (CDNs), natural STING agonists. Here, we aim to provide complementary information to large-scale "ligand-profiling" studies by probing the importance of STING-CDN protein-ligand interactions on the protein side. We examined in detail six typical CDNs each in complex with 13 rationally devised mutations in STING: S162A, S162T, Y167F, G230A, R232K, R232H, A233L, A233I, R238K, T263A, T263S, R293Q, and G230A/R293Q. The mutations switch on and off various types of protein-ligand interactions: π-π stacking, hydrogen bonding, ionic pairing, and nonpolar contacts. We correlated experimental data obtained by differential scanning fluorimetry, X-ray crystallography, and isothermal titration calorimetry with theoretical calculations. This enabled us to provide a mechanistic interpretation of the differences in the binding of representative CDNs to STING. We observed that the G230A mutation increased the thermal stability of the protein-ligand complex, indicating an increased level of ligand binding, whereas R238K and Y167F led to a complete loss of stabilization (ligand binding). The effects of the other mutations depended on the type of ligand (CDN) and varied, to some extent. A very good correlation (R2 = 0.6) between the experimental binding affinities and interaction energies computed by quantum chemical methods enabled us to explain the effect of the studied mutations in detail and evaluate specific interactions quantitatively. Our work may inspire development of high-affinity ligands against the common STING haplotypes by targeting the key (sometimes non-intuitive) protein-ligand interactions.


Assuntos
Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Mutação Puntual , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/genética , Estrutura Molecular , Nucleotídeos Cíclicos/química , Conformação Proteica , Domínios Proteicos
7.
Antiviral Res ; 185: 104971, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166574

RESUMO

Influenza viruses can cause severe respiratory infections in humans, leading to nearly half a million deaths worldwide each year. Improved antiviral drugs are needed to address the threat of development of novel pandemic strains. Current therapeutic interventions target three key proteins in the viral life cycle: neuraminidase, the M2 channel and RNA-dependent-RNA polymerase. Protein-protein interactions between influenza polymerase subunits are potential new targets for drug development. Using a newly developed assay based on AlphaScreen technology, we screened a peptide panel for protein-protein interaction inhibitors to identify a minimal PB1 subunit-derived peptide that retains high inhibition potential and can be further modified. Here, we present an X-ray structure of the resulting decapeptide bound to the C-terminal domain of PA polymerase subunit from pandemic isolate A/California/07/2009 H1N1 at 1.6 Å resolution and discuss its implications for the design of specific, potent influenza polymerase inhibitors.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Antivirais/farmacologia , Cristalização , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Virais/antagonistas & inibidores
8.
Eur J Med Chem ; 208: 112754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32883638

RESUMO

The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level. Here, we report the development and validation of a screening assay based on AlphaScreen technology and illustrate its application for determination of the inhibitory potency of a large set of polyols against PA N-terminal domain (PA-Nter) of influenza RNA-dependent RNA polymerase featuring endonuclease activity. The most potent inhibitors we identified were luteolin with an IC50 of 72 ± 2 nM and its 8-C-glucoside orientin with an IC50 of 43 ± 2 nM. Submicromolar inhibitors were also evaluated by an in vitro endonuclease activity assay using single-stranded DNA, and the results were in full agreement with data from the competitive AlphaScreen assay. Using X-ray crystallography, we analyzed structures of the PA-Nter in complex with luteolin at 2.0 Å resolution and quambalarine B at 2.5 Å resolution, which clearly revealed the binding pose of these polyols coordinated to two manganese ions in the endonuclease active site. Using two distinct assays along with the structural work, we have presumably identified and characterized the molecular mode-of-action of flavonoids in influenza-infected cells.


Assuntos
Antivirais/química , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Flavonoides/química , Vírus da Influenza A/enzimologia , Proteínas Virais/antagonistas & inibidores , Antivirais/metabolismo , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Endonucleases/química , Endonucleases/metabolismo , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo
9.
EMBO J ; 39(10): e102935, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31930742

RESUMO

Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Bacillus subtilis/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos
10.
Bioorg Med Chem ; 27(13): 2935-2947, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128993

RESUMO

This study focuses on design, synthesis and in vitro evaluation of inhibitory potency of two series of sialylmimetic that target an exosite ("150-cavity") adjacent to the active site of influenza neuraminidases from A/California/07/2009 (H1N1) pandemic strain and A/chicken/Nakorn-Patom/Thailand/CU-K2-2004 (H5N1). The structure-activity analysis as well as 3-D structure of the complex of parental compound with the pandemic neuraminidase p09N1 revealed high flexibility of the 150-cavity towards various modification of the neuraminidase inhibitors. Furthermore, our comparison of two methods for inhibition constant determination performed at slightly different pH values suggest that the experimental conditions of the measurement could dramatically influence the outcome of the analysis in the compound-dependent manner. Therefore, previously reported Ki values determined at non-physiological pH should be carefully scrutinized.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Neuraminidase/uso terapêutico , Oseltamivir/uso terapêutico , Humanos , Neuraminidase/farmacologia , Oseltamivir/farmacologia
11.
Biochem J ; 475(23): 3847-3860, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404922

RESUMO

Influenza neuraminidase is responsible for the escape of new viral particles from the infected cell surface. Several neuraminidase inhibitors are used clinically to treat patients or stockpiled for emergencies. However, the increasing development of viral resistance against approved inhibitors has underscored the need for the development of new antivirals effective against resistant influenza strains. A facile, sensitive, and inexpensive screening method would help achieve this goal. Recently, we described a multiwell plate-based DNA-linked inhibitor antibody assay (DIANA). This highly sensitive method can quantify femtomolar concentrations of enzymes. DIANA also has been applied to high-throughput enzyme inhibitor screening, allowing the evaluation of inhibition constants from a single inhibitor concentration. Here, we report the design, synthesis, and structural characterization of a tamiphosphor derivative linked to a reporter DNA oligonucleotide for the development of a DIANA-type assay to screen potential influenza neuraminidase inhibitors. The neuraminidase is first captured by an immobilized antibody, and the test compound competes for binding to the enzyme with the oligo-linked detection probe, which is then quantified by qPCR. We validated this novel assay by comparing it with the standard fluorometric assay and demonstrated its usefulness for sensitive neuraminidase detection as well as high-throughput screening of potential new neuraminidase inhibitors.


Assuntos
DNA/química , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Oseltamivir/análogos & derivados , Ácidos Fosforosos/química , Antivirais/química , Antivirais/farmacologia , Inibidores Enzimáticos/química , Humanos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Oseltamivir/química , Reprodutibilidade dos Testes , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
12.
Viruses ; 10(7)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933553

RESUMO

Neuraminidase is the main target for current influenza drugs. Reduced susceptibility to oseltamivir, the most widely prescribed neuraminidase inhibitor, has been repeatedly reported. The resistance substitutions I223V and S247N, alone or in combination with the major oseltamivir-resistance mutation H275Y, have been observed in 2009 pandemic H1N1 viruses. We overexpressed and purified the ectodomain of wild-type neuraminidase from the A/California/07/2009 (H1N1) influenza virus, as well as variants containing H275Y, I223V, and S247N single mutations and H275Y/I223V and H275Y/S247N double mutations. We performed enzymological and thermodynamic analyses and structurally examined the resistance mechanism. Our results reveal that the I223V or S247N substitution alone confers only a moderate reduction in oseltamivir affinity. In contrast, the major oseltamivir resistance mutation H275Y causes a significant decrease in the enzyme's ability to bind this drug. Combination of H275Y with an I223V or S247N mutation results in extreme impairment of oseltamivir's inhibition potency. Our structural analyses revealed that the H275Y substitution has a major effect on the oseltamivir binding pose within the active site while the influence of other studied mutations is much less prominent. Our crystal structures also helped explain the augmenting effect on resistance of combining H275Y with both substitutions.


Assuntos
Farmacorresistência Viral/genética , Vírus da Influenza A Subtipo H1N1/genética , Neuraminidase/química , Neuraminidase/genética , Substituição de Aminoácidos , Antivirais/farmacologia , Calorimetria , Cristalização , Inibidores Enzimáticos/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/virologia , Cinética , Mutação de Sentido Incorreto , Oseltamivir/farmacologia , Termodinâmica , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
13.
Sci Rep ; 6: 33671, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646017

RESUMO

The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi family remain unclear. Yeast Ddi1 has been implicated in the regulation of cell cycle progression, DNA-damage repair, and exocytosis. Here, we investigated the multi-domain structure of yeast Ddi1 using X-ray crystallography, nuclear magnetic resonance, and small-angle X-ray scattering. The crystal structure of the RVP domain sheds light on a putative substrate recognition site involving a conserved loop. Isothermal titration calorimetry confirms that both UBL and UBA domains bind ubiquitin, and that Ddi1 binds K48-linked diubiquitin with enhanced affinity. The solution NMR structure of a helical domain that precedes the protease displays tertiary structure similarity to DNA-binding domains from transcription regulators. Our structural studies suggest that the helical domain could serve as a landing platform for substrates in conjunction with attached ubiquitin chains binding to the UBL and UBA domains.


Assuntos
Dano ao DNA , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Família Multigênica , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquitina/metabolismo
14.
J Biol Chem ; 291(39): 20630-42, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27514744

RESUMO

The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.


Assuntos
Proteínas do Capsídeo/química , Vírus da Leucemia Murina/química , Animais , Proteínas do Capsídeo/genética , Vírus da Leucemia Murina/genética , Camundongos , Mutagênese , Domínios Proteicos , Estrutura Secundária de Proteína
15.
Sci Rep ; 6: 30443, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461074

RESUMO

Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization.


Assuntos
Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Células HEK293 , Humanos , Modelos Moleculares , Poliubiquitina/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteólise , Espalhamento a Baixo Ângulo , Análise de Sequência de Proteína , Soluções
16.
Bioorg Med Chem Lett ; 26(15): 3487-90, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353536

RESUMO

In an effort to identify an HIV-1 capsid assembly inhibitor with improved solubility and potency, we synthesized two series of pyrimidine analogues based on our earlier lead compound N-(4-(ethoxycarbonyl)phenyl)-2-(pyridine-4-yl)quinazoline-4-amine. In vitro binding experiments showed that our series of 2-pyridine-4-ylpyrimidines had IC50 values higher than 28µM. Our series of 2-pyridine-3-ylpyrimidines exhibited IC50 values ranging from 3 to 60µM. The congeners with a fluoro substituent introduced at the 4-N-phenyl moiety, along with a methyl at C-6, represent potent HIV capsid assembly inhibitors binding to the C-terminal domain of the capsid protein.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Pirimidinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Capsídeo/química , Relação Dose-Resposta a Droga , HIV-1/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 121: 100-109, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27236066

RESUMO

Influenza virus causes severe respiratory infections that are responsible for up to half a million deaths worldwide each year. Two inhibitors targeting viral neuraminidase have been approved to date (oseltamivir, zanamivir). However, the rapid development of antiviral drug resistance and the efficient transmission of resistant viruses among humans represent serious threats to public health. The approved influenza neuraminidase inhibitors have (oxa)cyclohexene scaffolds designed to mimic the oxonium transition state during enzymatic cleavage of sialic acid. Their active forms contain a carboxylate that interacts with three arginine residues in the enzyme active site. Recently, the phosphonate group was successfully used as an isostere of the carboxylate in oseltamivir, and the resulting compound, tamiphosphor, was identified as a highly active neuraminidase inhibitor. However, the structure of the complex of this promising inhibitor with neuraminidase has not yet been reported. Here, we analyzed the interaction of a set of oseltamivir and tamiphosphor derivatives with neuraminidase from the A/California/07/2009 (H1N1) influenza virus. We thermodynamically characterized the binding of oseltamivir carboxylate or tamiphosphor to the neuraminidase catalytic domain by protein microcalorimetry, and we determined crystal structure of the catalytic domain in complex with tamiphosphor at 1.8 Å resolution. This structural information should aid rational design of the next generation of neuraminidase inhibitors.


Assuntos
Antivirais/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Neuraminidase/metabolismo , Oseltamivir/análogos & derivados , Ácidos Fosforosos/metabolismo , Antivirais/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Influenza Humana/virologia , Cinética , Neuraminidase/antagonistas & inibidores , Oseltamivir/metabolismo , Oseltamivir/uso terapêutico , Pandemias , Ácidos Fosforosos/uso terapêutico , Ligação Proteica , Termodinâmica
18.
J Med Chem ; 59(2): 545-58, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26685880

RESUMO

Assembly of human immunodeficiency virus (HIV-1) represents an attractive target for antiretroviral therapy which is not exploited by currently available drugs. We established high-throughput screening for assembly inhibitors based on competition of small molecules for the binding of a known dodecapeptide assembly inhibitor to the C-terminal domain of HIV-1 CA (capsid). Screening of >70000 compounds from different libraries identified 2-arylquinazolines as low micromolecular inhibitors of HIV-1 capsid assembly. We prepared focused libraries of modified 2-arylquinazolines and tested their capacity to bind HIV-1 CA to compete with the known peptide inhibitor and to prevent the replication of HIV-1 in tissue culture. Some of the compounds showed potent binding to the C-terminal domain of CA and were found to block viral replication at low micromolar concentrations.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Quinazolinas/farmacologia , Fármacos Anti-HIV/metabolismo , Capsídeo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Quinazolinas/síntese química , Quinazolinas/química , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Termodinâmica , Replicação Viral/efeitos dos fármacos
19.
J Inorg Biochem ; 151: 143-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25898772

RESUMO

The structure of the active site in a metalloenzyme can be a key determinant of its metal ion binding affinity and catalytic activity. In this study, the conformational features of the Zn(2+)-binding HNH motif were investigated by CD-spectroscopy in combination with isothermal microcalorimetric titrations. Various point mutations, including T454A, K458A and W464A, were introduced into the N-terminal loop of the nuclease domain of colicin E7 (NColE7). We show that the folding of the proteins was severely disturbed by the mutation of the tryptophan residue. This points to the importance of W464, being a part of the hydrophobic core located close to the HNH-motif. ITC demonstrated that the Zn(2+)-binding of the mutants including the W464 site became weak, and according to CD-spectroscopic measurements the addition of the metal ion itself cannot fully recover the functional structure. Titrations with Zn(2+)-ion in the presence and absence of the Im7 protein proved that the structural changes in the unfolded mutant included the HNH-motif itself. The metal-binding of the NColE7 mutants could be, however, fully rescued by the complexation of Im7. This suggests that the formation of a preorganized metal-binding site--existing in the wild-type enzyme but not in the W464 mutants--was induced by Im7. The low nuclease activity of all W464A mutants, however, implies that the interactions of this tryptophan residue are required for precise location of the catalytic residues, i.e. for stabilization of the fine-structure and of the tertiary structure. Our results contribute to the understanding of the metal binding site preorganization.


Assuntos
Endonucleases/química , Zinco/química , Motivos de Aminoácidos , Sítios de Ligação , Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Ágar , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Terciária de Proteína , Soluções/química
20.
J Biol Inorg Chem ; 19(8): 1295-303, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156149

RESUMO

The nuclease domain of colicin E7 (NColE7) cleaves DNA nonspecifically. The active center is a Zn(2+)-containing HNH motif at the C-terminus. The N-terminal loop is essential for the catalytic activity providing opportunity for allosteric modulation of the enzyme. To identify the key residues responsible for the structural integrity of NColE7, a virtual alanine scan was performed on a semiempirical quantum chemical level within the 25 residue long N-terminal sequence (446-470). Based on the calculations the T454A/K458A/W464A-NColE7 triple mutant (TKW) was expressed and purified. According to the agarose gel electrophoresis experiments and linear dichroism spectra the catalytic activity of the TKW mutant decreased in comparison with wild-type NColE7. The distorted structure and weakened Zn(2+) binding may account for this as revealed by circular dichroism spectra, mass spectrometry, fluorescence-based thermal analysis and isothermal microcalorimetric titrations. Remarkably, the substrate induced the folding of the mutant protein.


Assuntos
Colicinas/genética , Colicinas/metabolismo , DNA/metabolismo , Proteínas Mutantes/metabolismo , Engenharia de Proteínas , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Colicinas/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...