Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260671

RESUMO

Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.

3.
Biomaterials ; 268: 120526, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302121

RESUMO

Intracortical microelectrodes with the ability to detect intrinsic electrical signals and/or deliver electrical stimulation into local brain regions have been a powerful tool to understand brain circuitry and for therapeutic applications to neurological disorders. However, the chronic stability and sensitivity of these intracortical microelectrodes are challenged by overwhelming biological responses, including severe neuronal loss and thick glial encapsulation. Unlike microglia and astrocytes whose activity have been extensively examined, oligodendrocytes and their myelin processes remain poorly studied within the neural interface field. Oligodendrocytes have been widely recognized to modulate electrical signal conductance along axons through insulating myelin segments. Emerging evidence offers an alternative perspective on neuron-oligodendrocyte coupling where oligodendrocytes provide metabolic and neurotrophic support to neurons through cytoplasmic myelin channels and monocarboxylate transporters. This study uses in vivo multi-photon microscopy to gain insights into the dynamics of oligodendrocyte soma and myelin processes in response to chronic device implantation injury over 4 weeks. We observe that implantation induces acute oligodendrocyte injury including initial deformation and substantial myelinosome formation, an early sign of myelin injury. Over chronic implantation periods, myelin and oligodendrocyte soma suffer severe degeneration proximal to the interface. Interestingly, wound healing attempts such as oligodendrogenesis are initiated over time, however they are hampered by continued degeneration near the implant. Nevertheless, this detailed characterization of oligodendrocyte spatiotemporal dynamics during microelectrode-induced inflammation may provide insights for novel intervention targets to facilitate oligodendrogenesis, enhance the integration of neural-electrode interfaces, and improve long-term functional performance.


Assuntos
Bainha de Mielina , Oligodendroglia , Microeletrodos , Neuroglia , Neurônios
5.
Biomaterials ; 183: 200-217, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172245

RESUMO

Oligodendrocytes and their precursors are critical glial facilitators of neurophysiology, which is responsible for cognition and behavior. Devices that are used to interface with the brain allow for a more in-depth analysis of how neurons and these glia synergistically modulate brain activity. As projected by the BRAIN Initiative, technologies that acquire a high resolution and robust sampling of neural signals can provide a greater insight in both the healthy and diseased brain and support novel discoveries previously unobtainable with the current state of the art. However, a complex series of inflammatory events triggered during device insertion impede the potential applications of implanted biosensors. Characterizing the biological mechanisms responsible for the degradation of intracortical device performance will guide novel biomaterial and tissue regenerative approaches to rehabilitate the brain following injury. Glial subtypes which assist with neuronal survival and exchange of electrical signals, mainly oligodendrocytes, their precursors, and the insulating myelin membranes they produce, are sensitive to inflammation commonly induced from insults to the brain. This review explores essential physiological roles facilitated by oligodendroglia and their precursors and provides insight into their pathology following neurodegenerative injury and disease. From this knowledge, inferences can be made about the impact of device implantation on these supportive glia in order to engineer effective strategies that can attenuate their responses, enhance the efficacy of neural interfacing technology, and provide a greater understanding of the challenges that impede wound healing and tissue regeneration during pathology.


Assuntos
Neurônios/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Materiais Biocompatíveis , Diferenciação Celular , Sobrevivência Celular , Eletrodos Implantados/efeitos adversos , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Oligodendroglia/citologia , Regeneração , Células-Tronco/citologia , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia
6.
J Cereb Blood Flow Metab ; 38(4): 627-640, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29372655

RESUMO

The interhemispheric circuit connecting the left and the right mammalian brain plays a key role in integration of signals from the left and the right side of the body. The information transfer is carried out by modulation of simultaneous excitation and inhibition. Hemodynamic studies of this circuit are inconsistent since little is known about neurovascular coupling of mixed excitatory and inhibitory signals. We investigated the variability in hemodynamic responses driven by the interhemispheric circuit during optogenetic and somatosensory activation. We observed differences in the neurovascular response based on the stimulation site - cell bodies versus distal projections. In half of the experiments, optogenetic stimulation of the cell bodies evoked a predominant post-synaptic inhibition in the other hemisphere, accompanied by metabolic oxygen consumption without coupled functional hyperemia. When the same transcallosal stimulation resulted in predominant post-synaptic excitation, the hemodynamic response was biphasic, consisting of metabolic dip followed by functional hyperemia. Optogenetic suppression of the postsynaptic excitation abolished the coupled functional hyperemia. In contrast, light stimulation at distal projections evoked consistently a metabolic response. Our findings suggest that functional hyperemia requires signals originating from the cell body and the hemodynamic response variability appears to reflect the balance between the post-synaptic excitation and inhibition.


Assuntos
Vasos Sanguíneos/inervação , Vasos Sanguíneos/fisiologia , Neurônios/fisiologia , Acoplamento Neurovascular/fisiologia , Optogenética/métodos , Animais , Vasos Sanguíneos/ultraestrutura , Corpo Caloso/fisiologia , Estimulação Elétrica , Lateralidade Funcional/fisiologia , Hemodinâmica , Hiperemia/fisiopatologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Neurônios/ultraestrutura , Consumo de Oxigênio/fisiologia , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...