Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 9(8): ofac381, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35983268

RESUMO

Host-directed therapeutics targeting immune dysregulation are considered the most promising approach to address the unmet clinical need for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). To better understand the current clinical study landscape and gaps in treating hospitalized patients with severe or critical COVID-19, we identified COVID-19 trials developing host-directed therapies registered at ClinicalTrials.gov and discussed the factors contributing to the success vs failure of these studies. We have learned, instead of the one-size-fits-all approach, future clinical trials evaluating a targeted immunomodulatory agent in heterogeneous patients with ALI/ARDS due to COVID-19 or other infectious diseases can use immune-based biomarkers in addition to clinical and demographic characteristics to improve patient stratification and inform clinical decision-making. Identifying distinct patient subgroups based on immune profiles across the disease trajectory, regardless of the causative pathogen, may accelerate evaluating host-directed therapeutics in trials of ALI/ARDS and related conditions (eg, sepsis).

2.
Mol Cell ; 46(2): 125-35, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22445484

RESUMO

Brca1 is required for DNA repair by homologous recombination (HR) and normal embryonic development. Here we report that deletion of the DNA damage response factor 53BP1 overcomes embryonic lethality in Brca1-nullizygous mice and rescues HR deficiency, as measured by hypersensitivity to polyADP-ribose polymerase (PARP) inhibition. However, Brca1,53BP1 double-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), indicating that BRCA1 has an additional role in DNA crosslink repair that is distinct from HR. Disruption of the nonhomologous end-joining (NHEJ) factor, Ku, promotes DNA repair in Brca1-deficient cells; however deletion of either Ku or 53BP1 exacerbates genomic instability in cells lacking FANCD2, a mediator of the Fanconi anemia pathway for ICL repair. BRCA1 therefore has two separate roles in ICL repair that can be modulated by manipulating NHEJ, whereas FANCD2 provides a key activity that cannot be bypassed by ablation of 53BP1 or Ku.


Assuntos
Proteína BRCA1/fisiologia , Reparo do DNA , Recombinação Homóloga/fisiologia , Animais , Antígenos Nucleares/fisiologia , Proteína BRCA1/genética , Proteínas de Ligação a DNA/fisiologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Autoantígeno Ku , Camundongos , Deleção de Sequência
3.
EMBO J ; 29(1): 158-70, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19875981

RESUMO

Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.


Assuntos
Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Acetilação , Epistasia Genética , Deleção de Genes , Genes Fúngicos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Modelos Biológicos , Complexos Multiproteicos , Mutação , Recombinação Genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética
4.
Biochimie ; 90(8): 1250-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18331848

RESUMO

Certain guanine-rich sequences are capable of forming higher order structures known as G-quadruplexes. Moreover, particular genomic regions in a number of highly divergent organisms are enriched for such sequences, raising the possibility that G-quadruplexes form in vivo and affect cellular processes. While G-quadruplexes have been rigorously studied in vitro, whether these structures actually form in vivo and what their roles might be in the context of the cell have remained largely unanswered questions. Recent studies suggest that G-quadruplexes participate in the regulation of such varied processes as telomere maintenance, transcriptional regulation and ribosome biogenesis. Here we review studies aimed at elucidating the in vivo functions of quadruplex structures, with a particular focus on findings in yeast. In addition, we discuss the utility of yeast model systems in the study of the cellular roles of G-quadruplexes.


Assuntos
DNA/química , DNA/metabolismo , Quadruplex G , Leveduras/metabolismo , Animais , DNA/genética , Proteínas Fúngicas/metabolismo , Humanos , Leveduras/genética
5.
Nucleic Acids Res ; 36(1): 144-56, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17999996

RESUMO

Although well studied in vitro, the in vivo functions of G-quadruplexes (G4-DNA and G4-RNA) are only beginning to be defined. Recent studies have demonstrated enrichment for sequences with intramolecular G-quadruplex forming potential (QFP) in transcriptional promoters of humans, chickens and bacteria. Here we survey the yeast genome for QFP sequences and similarly find strong enrichment for these sequences in upstream promoter regions, as well as weaker but significant enrichment in open reading frames (ORFs). Further, four findings are consistent with roles for QFP sequences in transcriptional regulation. First, QFP is correlated with upstream promoter regions with low histone occupancy. Second, treatment of cells with N-methyl mesoporphyrin IX (NMM), which binds G-quadruplexes selectively in vitro, causes significant upregulation of loci with QFP-possessing promoters or ORFs. NMM also causes downregulation of loci connected with the function of the ribosomal DNA (rDNA), which itself has high QFP. Third, ORFs with QFP are selectively downregulated in sgs1 mutants that lack the G4-DNA-unwinding helicase Sgs1p. Fourth, a screen for yeast mutants that enhance or suppress growth inhibition by NMM revealed enrichment for chromatin and transcriptional regulators, as well as telomere maintenance factors. These findings raise the possibility that QFP sequences form bona fide G-quadruplexes in vivo and thus regulate transcription.


Assuntos
Quadruplex G , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Saccharomyces cerevisiae/genética , DNA Ribossômico/química , Quadruplex G/efeitos dos fármacos , Genes Fúngicos/fisiologia , Genômica , Histonas/metabolismo , Mesoporfirinas/farmacologia , Mutação , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Telômero/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...