Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 14(10): 1042-1052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545361

RESUMO

OBJECTIVE: At the beginning of this century, a novel photopigment, melanopsin, was discovered in a sub-class of retinal ganglion cells and its action spectrum was described. Shortly after, it became evident that melanopsin is a major contributor to non-visual eye-mediated effects of light on e.g. the circadian, neuroendocrine and neurobehavioral systems. First applied studies pointed out that these non-visual effects of light are relevant for wellbeing, performance and general health. A standardized measurement metric for these nonvisual effects does not exist, but would ease application. Such a metric termed as 'melanopic lux' has been recently introduced and was shown to be superior to describe non-visual effects in animal studies compared to standard metrics. METHODS: We aimed at showing some validity of melanopic lux in humans using a seminaturalistic setting. Therefore, we analyzed the impact of different lighting conditions on melatonin suppression and subjective sleepiness by calculating effective illuminance based on single photopigment sensitivities. We retrospectively analyzed data from our laboratory, where young participants were exposed to a total of 19 different polychromatic lighting conditions, for 30 minutes in the evening, one hour prior to habitual bedtime. Saliva samples for melatonin concentration measures and subjective sleepiness were regularly assessed. The photopic illuminance of all lighting conditions ranged from 3 to 604 lx. Stepwise for- and backward regression analyses showed that melanopic lux was the best predictor for changes in melatonin concentrations (but not subjective sleepiness); R²=0.16 (p<0.05). In addition, we found a significant dose-response relationship between melanopic lux and changes in melatonin concentrations for 18 different lighting conditions (adjusted R²=0.52; p=0.004), similarly to what was previously reported for photopic lux. RESULTS: Our results indicate some new relevance for the application of melanopic lux as an additional metric to predict non-visual light effects of electrical light sources for nursing homes, work places, and homes.


Assuntos
Luz , Melatonina/análise , Vigília/fisiologia , Adolescente , Adulto , Feminino , Humanos , Iluminação , Masculino , Análise de Regressão , Estudos Retrospectivos , Saliva/química , Sono/fisiologia , Sono/efeitos da radiação , Adulto Jovem
2.
Int J Mol Sci ; 14(2): 2573-89, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23358248

RESUMO

Life in 24-h society relies on the use of artificial light at night that might disrupt synchronization of the endogenous circadian timing system to the solar day. This could have a negative impact on sleep-wake patterns and psychiatric symptoms. The aim of the study was to investigate the influence of evening light emitted by domestic and work place lamps in a naturalistic setting on melatonin levels and alertness in humans. Healthy subjects (6 male, 3 female, 22-33 years) were exposed to constant dim light (<10 lx) for six evenings from 7:00 p.m. to midnight. On evenings 2 through 6, 1 h before habitual bedtime, they were also exposed to light emitted by 5 different conventional lamps for 30 min. Exposure to yellow light did not alter the increase of melatonin in saliva compared to dim light baseline during (38 ± 27 pg/mL vs. 39 ± 23 pg/mL) and after light exposure (39 ± 22 pg/mL vs. 44 ± 26 pg/mL). In contrast, lighting conditions including blue components reduced melatonin increase significantly both during (office daylight white: 25 ± 16 pg/mL, bathroom daylight white: 24 ± 10 pg/mL, Planon warm white: 26 ± 14 pg/mL, hall daylight white: 22 ± 14 pg/mL) and after light exposure (office daylight white: 25 ± 15 pg/mL, bathroom daylight white: 23 ± 9 pg/mL, Planon warm white: 24 ± 13 pg/mL, hall daylight white: 22 ± 26 pg/mL). Subjective alertness was significantly increased after exposure to three of the lighting conditions which included blue spectral components in their spectra. Evening exposure to conventional lamps in an everyday setting influences melatonin excretion and alertness perception within 30 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...