Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(2): e9658, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124172

RESUMO

RATIONALE: The use of secondary ion mass spectrometry (SIMS) to perform micrometer-scale in situ carbon isotope (δ13 C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole-shell δ13 C values measured by gas source mass spectrometry (GSMS). METHODS: Paired SIMS and GSMS δ13 C values measured from final chamber fragments of the same shell of the planktic foraminifer Orbulina universa are compared. The SIMS-GSMS δ13 C differences (Δ13 CSIMS-GSMS ) were determined via paired analysis of hydrogen peroxide-cleaned fragments of modern cultured specimens and of fossil specimens from deep-sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT-253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). RESULTS: Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS-GSMS δ13 C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13 CSIMS-GSMS values of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS-GSMS δ13 C difference. CONCLUSIONS: The noted Δ13 CSIMS-GSMS values are most likely due to matrix effects causing sample-standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105 times smaller than that analyzed by GSMS; hence, the extent to which these Δ13 CSIMS-GSMS values represent differences in analyte or instrument factors remains unclear.


Assuntos
Peróxido de Hidrogênio , Espectrometria de Massa de Íon Secundário , Espectrometria de Massa de Íon Secundário/métodos , Isótopos de Carbono/análise , Gases
2.
Rapid Commun Mass Spectrom ; 32(20): 1781-1790, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29993156

RESUMO

RATIONALE: Stable oxygen isotope ratios (δ18 O values) measured in fish otoliths can provide valuable detailed information on fish life history, fish age determination, and ocean thermography. Traditionally, otoliths are sampled by micromilling followed by isotope ratio mass spectrometry (IRMS), but direct analysis by secondary ion mass spectrometry (SIMS) is becoming more common. However, these two methods have not been compared to determine which, if either, is better for fish age validation studies. Hence, the goals were to: (1) determine if the δ18 O signatures from the two different methods are similar, (2) determine which method is better for fish age validation studies, and (3) examine biogeographic and migration history. METHODS: Both analytical techniques, micromilling/IRMS and SIMS, were used to measure δ18 O values in six Pacific cod (Gadus macrocephalus) otoliths. A series of measurements was made from the center of each otolith to its edge to develop a life-history δ18 O signature for each fish. RESULTS: The sampling resolution of SIMS analyses was 2-3 times greater than that obtained by micromilling/IRMS. We found an offset between SIMS and micromilling/IRMS δ18 O values, about 0.5‰ on average, with SIMS yielding lower values. However, the δ18 O patterns from both methods (i.e., the number of δ18 O maxima) correspond to the estimated age determined by otolith growth-zone counts, validating fish age determination methods. CONCLUSIONS: Both techniques resolved δ18 O life-history signatures and showed patterns consistent with seasonal variation in temperatures and changes due to fish migration. When otoliths are large, micromilling/IRMS can provide adequate resolution for fish age validation. However, SIMS is the better option if greater sampling resolution is required, such as when otoliths are small or specimens are longer lived and have compact growth zones.


Assuntos
Gadiformes/fisiologia , Membrana dos Otólitos/química , Isótopos de Oxigênio/análise , Espectrometria de Massa de Íon Secundário/métodos , Animais , Ecologia , Oceanos e Mares
3.
Astrobiology ; 17(5): 413-430, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28520472

RESUMO

Thrombolites are buildups of carbonate that exhibit a clotted internal structure formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and in situ stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Analyses revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis and carboxylic and fatty acid synthesis within the mats that had not been previously observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study provides the first look at the spatial organization of the microbial populations within Bahamian thrombolites and enables the distribution of microbes to be correlated with their activities within modern thrombolite systems. Key Words: Thrombolites-Microbial diversity-Metagenome-Stable isotopes-Microbialites. Astrobiology 17, 413-430.


Assuntos
Bactérias , Metagenômica , Bahamas , Sedimentos Geológicos , Isótopos , Filogenia , RNA Ribossômico 16S
4.
PLoS One ; 11(4): e0153890, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100183

RESUMO

Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 µm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 µm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.


Assuntos
Exoesqueleto/química , Exoesqueleto/crescimento & desenvolvimento , Nautilus/crescimento & desenvolvimento , Isótopos de Oxigênio/química , Oxigênio/química , Animais , Espectrometria de Massas
5.
Proc Natl Acad Sci U S A ; 113(4): 919-24, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755592

RESUMO

Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000-55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions.

7.
Proc Natl Acad Sci U S A ; 112(7): 2087-92, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646436

RESUMO

The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼ 2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼ 1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga "Great Oxidation Event," these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis.


Assuntos
Bactérias/isolamento & purificação , Evolução Biológica , Fósseis/microbiologia , Enxofre/metabolismo , Bactérias/metabolismo
8.
PLoS One ; 8(12): e84235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358346

RESUMO

We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha. Carbon stable isotope ratios (δ(13)C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ(13)C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River's water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.


Assuntos
Cyprinidae , Espécies em Perigo de Extinção , Membrana dos Otólitos , Animais , Colorado , Ecossistema , Água Doce/análise , Água Doce/química , Geografia , Rios
9.
J Am Chem Soc ; 134(17): 7351-8, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22313180

RESUMO

Nacre, or mother-of-pearl, the tough, iridescent biomineral lining the inner side of some mollusk shells, has alternating biogenic aragonite (calcium carbonate, CaCO(3)) tablet layers and organic sheets. Nacre has been common in the shells of mollusks since the Ordovician (450 million years ago) and is abundant and well-preserved in the fossil record, e.g., in ammonites. Therefore, if any measurable physical aspect of the nacre structure was correlated with environmental temperatures, one could obtain a structural paleothermometer of ancient climates. Using X-ray absorption near-edge structure (XANES) spectroscopy, Photoelectron emission spectromicroscopy (PEEM), and X-ray linear dichroism we acquired polarization-dependent imaging contrast (PIC) maps of pristine nacre in cross-section. The new PIC-map data reveal that the nacre ultrastructure (nacre tablet width, thickness, and angle spread) is species-specific in at least eight mollusk species from completely different environments: Nautilus pompilius, Haliotis iris, Haliotis rufescens, Bathymodiolus azoricus, Atrina rigida, Lasmigona complanata, Pinctada margaritifera, and Mytilus californianus. Nacre species-specificity is interpreted as a result of adaptation to diverging environments. We found strong correlation between nacre crystal misorientations and environmental temperature, further supported by secondary ion mass spectrometry measurements of in situ δ(18)O in the nacre of one shell. This has far-reaching implications: nacre texture may be used as a paleothermometer of ancient climate, spanning 450 million years of Earth's history.


Assuntos
Moluscos/anatomia & histologia , Moluscos/química , Nácar/química , Animais , Moluscos/ultraestrutura , Espectroscopia Fotoeletrônica , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...