Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Orthop J ; 6: 1-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312417

RESUMO

Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database.48 Caucasian and Asian bone models (left and right) from the database were used for the preliminary optimization process and validation of the fibula plate. The implant was constructed to fit bilaterally in a lateral position of the fibula. Then a biomechanical comparison of the designed implant to the current gold standard in the treatment of distal fibular fractures (locking 1/3 tubular plate) was conducted. Finally, a clinical surveillance study to evaluate the grade of implant fit achieved was performed. The results showed that with a virtual anatomic database it was possible to design a fibula plate with an optimized fit for a large proportion of the population. Biomechanical testing showed the novel fibula plate to be superior to 1/3 tubular plates in 4-point bending tests. The clinical application showed a very high degree of primary implant fit. Only in a small minority of cases further intra-operative implant bending was necessary. Therefore, the goal to develop an implant for the treatment of distal fibular fractures based on the evidence of a large anatomical database could be attained. Biomechanical testing showed good results regarding the stability and the clinical application confirmed the high grade of anatomical fit.

2.
Comput Aided Surg ; 15(1-3): 49-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20594116

RESUMO

Vertebroplasty is a minimally invasive procedure with many benefits; however, the procedure is not without risks and potential complications, of which leakage of the cement out of the vertebral body and into the surrounding tissues is one of the most serious. Cement can leak into the spinal canal, venous system, soft tissues, lungs and intradiscal space, causing serious neurological complications, tissue necrosis or pulmonary embolism. We present a method for automatic segmentation and tracking of bone cement during vertebroplasty procedures, as a first step towards developing a warning system to avoid cement leakage outside the vertebral body. We show that by using active contours based on level sets the shape of the injected cement can be accurately detected. The model has been improved for segmentation as proposed in our previous work by including a term that restricts the level set function to the vertebral body. The method has been applied to a set of real intra-operative X-ray images and the results show that the algorithm can successfully detect different shapes with blurred and not well-defined boundaries, where the classical active contours segmentation is not applicable. The method has been positively evaluated by physicians.


Assuntos
Cimentos Ósseos/farmacocinética , Vértebras Lombares/cirurgia , Osteoporose/cirurgia , Doenças da Coluna Vertebral/cirurgia , Vertebroplastia/métodos , Extravasamento de Materiais Terapêuticos e Diagnósticos/diagnóstico por imagem , Extravasamento de Materiais Terapêuticos e Diagnósticos/prevenção & controle , Humanos , Vértebras Lombares/diagnóstico por imagem , Modelos Teóricos , Osteoporose/diagnóstico , Doenças da Coluna Vertebral/diagnóstico , Tomografia Computadorizada por Raios X , Resultado do Tratamento
3.
Med Image Anal ; 14(3): 265-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20359938

RESUMO

Statistical shape analysis techniques have shown to be efficient tools to build population specific models of anatomical variability. Their use is commonplace as prior models for segmentation, in which case the instance from the shape model that best fits the image data is sought. In certain cases, however, it is not just the most likely instance that must be searched, but rather the whole set of shape instances that meet certain criterion. In this paper we develop a method for the assessment of specific anatomical/morphological criteria across the shape variability found in a population. The method is based on a level set segmentation approach, and used on the parametric space of the statistical shape model of the target population, solved via a multi-level narrow-band approach for computational efficiency. Based on this technique, we develop a framework for evidence-based orthopaedic implant design. To date, implants are commonly designed and validated by evaluating implant bone fitting on a limited set of cadaver bones, which not necessarily span the whole variability in the population. Based on our framework, we can virtually fit a proposed implant design to samples drawn from the statistical model, and assess which range of the population is suitable for the implant. The method highlights which patterns of bone variability are more important for implant fitting, allowing and easing implant design improvements, as to fit a maximum of the target population. Results are presented for the optimisation of implant design of proximal human tibia, used for internal fracture fixation.


Assuntos
Algoritmos , Fixação Interna de Fraturas/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tíbia/diagnóstico por imagem , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Inteligência Artificial , Simulação por Computador , Desenho Assistido por Computador , Humanos , Imageamento Tridimensional/métodos , Modelos Biológicos , Modelos Estatísticos , Desenho de Prótese/métodos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-20628477

RESUMO

Extensive recent work has taken place on the construction of probabilistic atlases of anatomical organ. We propose a probabilistic atlas of ten major abdominal organs which retains structural variability by using a size-preserving affine registration, and normalizes the physical organ locations to an anatomical landmark. Restricting the degrees of freedom in the transformation, the bias from the reference data is minimized, in terms of organ shape, size and position. Additionally, we present a scheme for the study of anatomical variability within the abdomen, including the clusterization of the modes of variation. The analysis of deformation fields showed a strong correlation with anatomical landmarks and known mechanical deformations in the abdomen. The atlas and its dependencies represent a potentially important research tool for abdominal diagnosis, modeling and soft tissue interventions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-19162666

RESUMO

Extensive recent work has taken place on the construction of probabilistic atlases of anatomical organs, especially the brain, and their application in medical image analysis. These techniques are leading the way into similar studies of other organs and more comprehensively of groups of organs. In this paper we report results on the analysis of anatomical variability obtained from probabilistic atlases of abdominal organs. Two factor analysis techniques, namely principal component analysis (PCA) and principal factor analysis (PFA), were used to decompose and study shape variability within the abdomen. To assess and ease the interpretability of the resulting deformation modes, a clustering technique of the deformation vectors is proposed. The analysis of deformation fields obtained using these two factor analysis techniques showed strong correlation with anatomical landmarks and known mechanical deformations in the abdomen, allowing us to conclude that PFA is a complementary decomposition technique that offers easy-to-interpret additional information to PCA in a clinical setting. The analysis of organ anatomical variability will represent a potentially important research tool for abdominal diagnosis and modeling.


Assuntos
Antropometria/métodos , Modelos Anatômicos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Vísceras/anatomia & histologia , Vísceras/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...