Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(19): 34935-34937, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242497

RESUMO

We correct values and figures for the resolution of the spectrometer, as proposed in [Opt. Express25, 31840 (2017)10.1364/OE.25.031840OPEXFF1094-4087]. The new results take into account previously unknown, incoherent phase fluctuations, caused by the polycapillary lens (PCL), and estimate the realistic performance of the instrument.

2.
ACS Appl Mater Interfaces ; 12(10): 12353-12361, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045207

RESUMO

We report on the chemical and electronic structure of cesium tin bromide (CsSnBr3) and how it is impacted by the addition of 20 mol % tin fluoride (SnF2) to the precursor solution, using both surface-sensitive lab-based soft X-ray photoelectron spectroscopy (XPS) and near-surface bulk-sensitive synchrotron-based hard XPS (HAXPES). To determine the reproducibility and reliability of conclusions, several (nominally identically prepared) sample sets were investigated. The effects of deposition reproducibility, handling, and transport are found to cause significant changes in the measured properties of the films. Variations in the HAXPES-derived compositions between individual sample sets were observed, but in general, they confirm that the addition of 20 mol % SnF2 improves coverage of the titanium dioxide substrate by CsSnBr3 and decreases the oxidation of SnII to SnIV while also suppressing formation of secondary Br and Cs species. Furthermore, the (surface) composition is found to be Cs-deficient and Sn-rich compared to the nominal stoichiometry. The valence band (VB) shows a SnF2-induced redistribution of Sn 5s-derived density of states, reflecting the changing SnII/SnIV ratio. Notwithstanding some variability in the data, we conclude that SnF2 addition decreases the energy difference between the VB maximum of CsSnBr3 and the Fermi level, which we explain by defect chemistry considerations.

3.
Opt Express ; 25(25): 31840-31852, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245854

RESUMO

A collimating polycapillary half lens, traditionally used in the medium and hard X-ray band, is operated at a photon energy of 36 eV for the first time. While the transmission still exceeds 50%, the measured and simulated spatial resolution and angular divergence approach 0.4 mm or less and at most 20 mrad, respectively. This unexpected, superior performance of the polycapillary optic in the extreme Ultraviolet could enable the design of an efficient, versatile and compact spectrometer for inverse photoemission spectroscopy (IPES): Its wavelength-dispersive component, a customized reflection zone plate, can maintain an energy resolution of 0.3 eV, whereas the sensitivity may be enhanced by more than one order of magnitude, compared to conventional spectrometers. Furthermore, the overall length of 0.9 m would allow for an eased alignment and evacuation. We see a significant potential for numerous polycapillary-based XUV / soft X-ray instruments in the future, in particular after further optimization for this long wavelength regime.

4.
ACS Nano ; 8(6): 5784-9, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24847770

RESUMO

The development of new phases of matter at oxide interfaces and surfaces by extrinsic electric fields is of considerable significance both scientifically and technologically. Vanadium dioxide (VO2), a strongly correlated material, exhibits a temperature-driven metal-to-insulator transition, which is accompanied by a structural transformation from rutile (high-temperature metallic phase) to monoclinic (low-temperature insulator phase). Recently, it was discovered that a low-temperature conducting state emerges in VO2 thin films upon gating with a liquid electrolyte. Using photoemission spectroscopy measurements of the core and valence band states of electrolyte-gated VO2 thin films, we show that electronic features in the gate-induced conducting phase are distinct from those of the temperature-induced rutile metallic phase. Moreover, polarization-dependent measurements reveal that the V 3d orbital ordering, which is characteristic of the monoclinic insulating phase, is partially preserved in the gate-induced metallic phase, whereas the thermally induced metallic phase displays no such orbital ordering. Angle-dependent measurements show that the electronic structure of the gate-induced metallic phase persists to a depth of at least ∼40 Å, the escape depth of the high-energy photoexcited electrons used here. The distinct electronic structures of the gate-induced and thermally induced metallic phases in VO2 thin films reflect the distinct mechanisms by which these states originate. The electronic characteristics of the gate-induced metallic state are consistent with the formation of oxygen vacancies from electrolyte gating.

5.
Phys Rev Lett ; 107(3): 036402, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838382

RESUMO

This study reports on the linear dichroism in angular-resolved photoemission from the valence band of the Heusler compounds NiTi0.9Sc0.1Sn and NiMnSb. High-resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. The valence band spectra exhibit the typical structure expected from first-principles calculations of the electronic structure of these compounds. Noticeable linear dichroism is found in the valence band of both materials, and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry-dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...