Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1184726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056991

RESUMO

[This corrects the article DOI: 10.3389/fphar.2022.927984.].

2.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792833

RESUMO

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Assuntos
Anfetamina , Dopamina , Animais , Feminino , Camundongos , Amidoidrolases/genética , Amidoidrolases/metabolismo , Anfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Genótipo , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética
3.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233204

RESUMO

The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study's objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in major psychiatric disorders using publicly accessible expression databases. Since co-expressed genes are more likely to be involved in the same biologic processes, we investigated co-expression patterns with DDAH1 and DDAH2 in the dorsolateral prefrontal cortex in psychiatric patients and control subjects. There were no significant differences in DDAH1 and DDAH2 expression levels in schizophrenia or bipolar disorder patients compared to controls. Meanwhile, the data suggest that in patients, DDAH1 and DDHA2 undergo a functional shift mirrored in changes in co-expressed gene patterns. This disarrangement appears in the loss of expression level correlations between DDAH1 or DDAH2 and genes associated with psychiatric disorders and reduced functional similarity of DDAH1 or DDAH2 co-expressed genes in the patient groups. Our findings evidence the possible involvement of DDAH1 and DDAH2 in neuropsychiatric disorder development, but the underlying mechanisms need experimental validation.


Assuntos
Amidoidrolases , Produtos Biológicos , Transtornos Mentais , Amidoidrolases/genética , Amidoidrolases/metabolismo , Arginina/metabolismo , Humanos , Transtornos Mentais/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase
4.
Front Pharmacol ; 13: 927984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837277

RESUMO

Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.

5.
Front Behav Neurosci ; 16: 847410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431833

RESUMO

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity-particularly, decreased spectral power of the cortex and striatum in the 0, 9-20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.

6.
Cell Mol Neurobiol ; 42(7): 2273-2288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34014421

RESUMO

The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.


Assuntos
Isoenzimas , Óxido Nítrico , Amidoidrolases , Animais , Sistema Nervoso Central , Humanos , Camundongos
7.
Neuropharmacology ; 182: 108373, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132188

RESUMO

Trace amine-associated receptors (TAARs) are a class of sensory G protein-coupled receptors that detect biogenic amines, products of decarboxylation of amino acids. The majority of TAARs (TAAR2-TAAR9) have been described mainly in the olfactory epithelium and considered to be olfactory receptors sensing innate odors. However, there is recent evidence that one of the members of this family, TAAR5, is expressed also in the limbic brain areas receiving projection from the olfactory system and involved in the regulation of emotions. In this study, we further characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO mice) that express beta-galactosidase mapping TAAR5 expression. We found that in TAAR5-KO mice the number of dopamine neurons, the striatal levels of dopamine and its metabolites, as well as striatal levels of GDNF mRNA, are elevated indicating a potential increase in dopamine neuron proliferation. Furthermore, an analysis of TAAR5 beta-galactosidase expression revealed that TAAR5 is present in the major neurogenic areas of the brain such as the subventricular zone (SVZ), the subgranular zone (SGZ) and the less characterized potentially neurogenic zone surrounding the 3rd ventricle. Direct analysis of neurogenesis by using specific markers doublecortin (DCX) and proliferating cell nuclear antigen (PCNA) revealed at least 2-fold increase in the number of proliferating neurons in the SVZ and SGZ of TAAR5-KO mice, but no such markers were detected in mutant or control mice in the areas surrounding the 3rd ventricle. These observations indicate that TAAR5 involved not only in regulation of emotional status but also adult neurogenesis and dopamine transmission. Thus, future TAAR5 antagonists may exert not only antidepressant and/or anxiolytic action but may also provide new treatment opportunity for neurodegenerative disorders such as Parkinson's disease.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Encéfalo/crescimento & desenvolvimento , Neurônios Dopaminérgicos/metabolismo , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética
8.
Genetics ; 212(1): 231-243, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898771

RESUMO

Precise signaling at the neuromuscular junction (NMJ) is essential for proper muscle contraction. In the Caenorhabditis elegans pharynx, acetylcholine (ACh) released from the MC and M4 motor neurons stimulates two different types of contractions in adjacent muscle cells, termed pumping and isthmus peristalsis. MC stimulates rapid pumping through the nicotinic ACh receptor EAT-2, which is tightly localized at the MC NMJ, and eat-2 mutants exhibit a slow pump rate. Surprisingly, we found that eat-2 mutants also hyperstimulated peristaltic contractions, and that they were characterized by increased and prolonged Ca2+ transients in the isthmus muscles. This hyperstimulation depends on cross talk with the GAR-3 muscarinic ACh receptor as gar-3 mutation specifically suppressed the prolonged contraction and increased Ca2+ observed in eat-2 mutant peristalses. Similar GAR-3-dependent hyperstimulation was also observed in mutants lacking the ace-3 acetylcholinesterase, and we suggest that NMJ defects in eat-2 and ace-3 mutants result in ACh stimulation of extrasynaptic GAR-3 receptors in isthmus muscles. gar-3 mutation also suppressed slow larval growth and prolonged life span phenotypes that result from dietary restriction in eat-2 mutants, indicating that cross talk with the GAR-3 receptor has a long-term impact on feeding behavior and eat-2 mutant phenotypes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Contração Muscular , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios Motores , Músculos/fisiologia , Faringe/metabolismo , Faringe/fisiologia , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/fisiologia , Transdução de Sinais
9.
Epigenetics ; 6(9): 1078-84, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21814036

RESUMO

For a 140-kb human genome locus, an analysis of the distribution of Dam methylase accessible sites, DNase I sensitive and resistant regions, unmethylated CpG sites and acetylated histone H3 molecules was performed and compared with transcriptional activity of the genes within the locus. A direct correlation was found between the extent of Dam methylation and C5 cytosine (CpG) methylation. It was also demonstrated that promoter regions of all highly and moderately transcribed genes are highly accessible to methylation by Dam methylase. In contrast, promoters of non-transcribed genes showed a very low extent of Dam methylation. Promoter regions of non-transcribed genes were also highly CpG methylated, and the promoter and more distant 5'-regions of the housekeeping gene COX6B1 were substantially CpG-demethylated. Some highly Dam methylase accessible regions are present in the intergenic regions of the locus suggesting that the latter contain either unidentified non-coding transcripts or extended regulatory elements like locus control regions.


Assuntos
Cromatina/química , Mamíferos/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Acetilação , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Cromossomos Humanos Par 19/química , Cromossomos Humanos Par 19/genética , Ilhas de CpG , Metilação de DNA , Desoxirribonucleases de Sítio Específico do Tipo II/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Loci Gênicos , Genoma Humano , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Plasmídeos/química , Plasmídeos/genética , Regiões Promotoras Genéticas , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...