Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 10(24): 4805-4811, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29164810

RESUMO

Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS2 , VS4 , TiS3 , NbS3 , TiS4 , MoS3 , etc., in which the key role is played by the (S-S)2- /2 S2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications.

2.
Adv Colloid Interface Sci ; 245: 40-61, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28477866

RESUMO

This review focuses on the exfoliation of transition metal dichalcogenides MQ2 (TMD, M=Mo, W, etc., Q=S, Se, Te) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS2, MoSe2, WS2 and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine, etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS2 and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation, etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS2 with solvents evidence that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS2 layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ2 into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ2 nanosheets, a special and different approach, consisting in the functionalization of MQ2 surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS3, VS4, Mo2S3, etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS2 and its related materials.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28214428

RESUMO

For the first time the comparison of the theoretical and experimental data have shown that UV-vis absorption in the region of 600nm in colloidal solution of NbS3 can be described by the d-d electronic transitions to the antibonding molecular orbital. It is proved that the process leads to excitation of metal-metal bond.

4.
Chemistry ; 21(12): 4639-45, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25663043

RESUMO

Although many of the layered metal chalcogenides, such as MoS2, are well-studied, some other chalcogenides have received less attention by comparison. In particular, there has been an emerging interest in vanadium tetrasulfide (VS4), which displays useful properties as a component of hybrids. However, the synthetic methods and characteristics of individual VS4 are not yet well defined, and there is no report on its solution processability. Here we have synthesized VS4 by a simple and fast direct reaction between elements. Reinvestigation of the VS4 crystal structure yielded more precise atomic coordinates and interatomic distances, thereby confirming the crystallization of VS4 in the monoclinic C2/c group and its quasi-1D chainlike structure. As the chains in VS4 are only bonded by weak van der Waals forces, we further demonstrate that bulk VS4 may be ultrasonically dispersed in appropriate solvents to form colloids, similarly to the layered chalcogenides. VS4 particles in colloids retain their phase identity and rod-shaped morphology with lengths in the range of hundreds of nanometers. Isopropanol dispersion exhibited the highest concentration and stability, which was achieved owing to the repulsion caused by high negative charges on the edges of the particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...