Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139402

RESUMO

Fever-range hyperthermia (FRH) is utilized in chronic disease treatment and serves as a model for fever's thermal component investigation. Macrophages, highly susceptible to heat, play a pivotal role in various functions determined by their polarization state. However, it is not well recognized whether this process can be modulated by FRH. To address this, we used two different macrophage cell lines that were treated with FRH. Next, to define macrophage phenotype, we examined their functional surface markers CD80 and CD163, intracellular markers such as inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), and the expression of interleukin-10 (IL-10) and tumor necrosis factor α (TNF-α). Additionally, in FRH-treated cells, we analyzed an expression of Toll-like receptor 4 (TLR-4) and its role in macrophage polarization. We also checked whether FRH can switch the polarization of macrophages in pro-inflammatory condition triggered by lipopolysaccharide (LPS). FRH induced M2-like polarization, evident in increased CD163, IL-10, and Arg-1 expression. Notably, elevated COX-2, TNF-α, and TLR-4 indicated potential pro-inflammatory properties, suggesting polarization towards the M2b phenotype. Additionally, FRH shifted lipopolysaccharide (LPS)-induced M1 polarization to an M2-like phenotype, reducing antimicrobial molecules (ROS and NO). In summary, FRH emerged as a modulator favoring M2-like macrophage polarization, even under pro-inflammatory conditions, showcasing its potential therapeutic relevance.


Assuntos
Hipertermia Induzida , Interleucina-10 , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Fenótipo
2.
Cancers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894480

RESUMO

Endotoxin tolerance (ET) is an adaptive phenomenon of the immune system that protects the host from clinical complications due to repeated exposure of the body to endotoxins such as lipopolysaccharide (LPS). Since ET is an immunosuppressive mechanism in which a significant reprogramming of macrophages is observed, we hypothesized that it could influence cancer development by modifying the tumour environment. This study aimed to explore whether ET influences cancer progression by altering the tumour microenvironment. Endotoxin-tolerant macrophages (MoET) were examined for their impact on breast and colon cancer cells via direct interaction and conditioned media exposure. We characterized cancer cell behaviour by viability, clonogenic potential, motility, scratch assays, and 3D spheroidal assays. MoET-derived factors increased cancer cell viability, motility, and clonogenicity, suggesting a conducive environment for cancer development. Remarkably, despite reduced TNFα and IL-6 levels, MoET exhibited M1 polarization. These findings uncover an ET-associated macrophage reprogramming that fosters a favourable context for cancer progression across diverse tumours. Targeting ET could emerge as a promising avenue for cancer therapy and prevention.

3.
Int J Hyperthermia ; 40(1): 2216899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279921

RESUMO

OBJECTIVE: Fever is defined as a rise in body temperature upon disease. Fever-range hyperthermia (FRH) is a simplified model of fever and a well-established medical procedure. Despite its beneficial effects, the molecular changes induced by FRH remain poorly characterized. The aim of this study was to investigate the influence of FRH on regulatory molecules such as cytokines and miRNAs involved in inflammatory processes. METHODS: We developed a novel, fast rat model of infrared-induced FRH. The body temperature of animals was monitored using biotelemetry. FRH was induced by the infrared lamp and heating pad. White blood cell counts were monitored using Auto Hematology Analyzer. In peripheral blood mononuclear cells, spleen and liver expression of immune-related genes (IL-10, MIF and G-CSF, IFN-γ) and miRNA machinery (DICER1, TARBP2) was analyzed with RT-qPCR. Furthermore, RT-qPCR was used to explore miRNA-155 levels in the plasma of rats. RESULTS: We observed a decrease in the total number of leukocytes due to lower number of lymphocytes, and an increase in the number of granulocytes. Furthermore, we observed elevated expressions of DICER1, TARBP2 and granulocyte colony-stimulating factor (G-CSF) in the spleen, liver and PBMCs immediately following FRH. FRH treatment also had anti-inflammatory effects, evidenced by the downregulation of pro-inflammatory macrophage migration inhibitor factor (MIF) and miR-155, and the increased expression of anti-inflammatory IL-10. CONCLUSION: FRH affects the expression of molecules involved in inflammatory processes leading to alleviated inflammation. We suppose these effects may be miRNAs-dependent and FRH can be involved in therapies where anti-inflammatory action is needed.


Assuntos
Hipertermia Induzida , MicroRNAs , Ratos , Animais , Ratos Wistar , Interleucina-10 , MicroRNAs/genética , Leucócitos Mononucleares , Citocinas , Fator Estimulador de Colônias de Granulócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...