Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 27: 500-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24184095

RESUMO

Crop pathogens evolve rapidly to adapt to their hosts. The use of crops with quantitative disease resistance is expected to alter selection of pathogen life-history traits. This may result in differential adaptation of the pathogen to host cultivars and, sometimes, to the erosion of quantitative resistance. Here, we assessed the level of host adaptation in an oomycete plant pathogenic species. We analysed the phenotypic and genetic variability of 17 Plasmopara viticola isolates collected on Vitis vinifera and 35 isolates from partially resistant varieties (Regent and genotypes carrying the Rpv1 gene). Cross-inoculation experiments assessed two components of aggressiveness and a life-history trait of the pathogen: disease severity, sporangial production and sporangia size. The results contribute evidence to the emergence of P. viticola aggressive isolates presenting a high level of sporulation on the partially resistant Regent. By contrast, no adaptation to the Rpv1 gene was found in this study. The erosion of Regent resistance may have occurred in less than 5years and at least three times independently in three distant wine-producing areas. Populations from resistant varieties showed a significant increase in sporangia production capacity, indicating an absence of fitness costs for this adaptation. The increase in the number of sporangia was correlated with a reduction in sporangia size, a result which illustrates how partial plant disease resistance can impact selection of the pathogen's life-history traits. This case study on grapevine downy mildew shows how new plant pathogen populations emerge in agro-ecosystems by adapting to partial host resistance. This adaptive pattern highlights the need for wise management of plant partial disease resistance to ensure its sustainability over time.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Oomicetos , Vitis/microbiologia , Geografia
2.
Biotechnol Biotechnol Equip ; 28(1): 14-20, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019484

RESUMO

Twenty-seven grapevine (Vitis vinifera L.) varieties within 12 putative berry colour variation groups (conculta) were genotyped with 14 highly polymorphic microsatellite (simple sequence repeats (SSR)) markers. Three additional oligonucleotide primers were applied for the detection of the Gret1 retroelement insertion in the promoter region of VvMybA1 transcription factor gene regulating the UFGT (UDP-glucose: flavonoid 3-O-glucosyltransferase) activity. UFGT is the key enzyme of the anthocyanin biosynthetic pathway. SSR results proved that the analysed cultivars can be grouped only into nine concultas, the other three putative berry colour variant groups consist of homonyms as a consequence of misnaming. In the case of Sárfehér-Sárpiros, Delaware red-Delaware white and Járdovány fekete-Járdovány fehér, it was attested that they are not bud sports, but homonyms. Some conculta members could be differentiated according to the presence or the absence of the Gret1 retroelement (Chasselas, Furmint and Lisztes), while others, Bajor, Bakator, Gohér and Traminer conculta members, remained indistinguishable either by the microsatellites or the Gret1-based method.

3.
PLoS One ; 8(4): e61228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593440

RESUMO

The Amur grape (Vitis amurensis Rupr.) thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.). A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+) haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+) haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+) became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3) only by phenotypic selection. Rpv12(+) has an additive effect with Rpv3(+) to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+) plants.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Endogamia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Vitis/genética , Vitis/microbiologia , Ásia , Sequência de Bases , Cromossomos de Plantas/genética , Ligação Genética , Haplótipos/genética , Interações Hospedeiro-Patógeno/genética , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Vitis/imunologia
4.
Theor Appl Genet ; 125(7): 1565-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22801874

RESUMO

Agrobacteria are efficient plant pathogens. They are able to transform plant cells genetically resulting in abnormal cell proliferation. Cultivars of Vitis vinifera are highly susceptible to many virulent Agrobacterium strains but certain wild Vitis species, including Vitis amurensis have resistant genotypes. Studies of the molecular background of such natural resistance are of special importance, not only for practical benefits in agricultural practice but also for understanding the role of plant genes in the transformation process. Earlier, crown gall resistance from V. amurensis was introgressed into V. vinifera through interspecific breeding and it was shown to be inherited as a single and dominant Mendelian trait. To develop this research further, towards understanding underlying molecular mechanisms, a mapping population was established, and resistance-coupled molecular DNA markers were identified by three different approaches. First, RAPD makers linked to the resistance locus (Rcg1) were identified, and on the basis of their DNA sequences, we developed resistance-coupled SCAR markers. However, localization of these markers in the grapevine genome sequence failed due to their similarity to many repetitive regions. Next, using SSR markers of the grapevine reference linkage map, location of the resistance locus was established on linkage group 15 (LG15). Finally, this position was supported further by developing new chromosome-specific markers and by the construction of the genetic map of the region including nine loci in 29.1 cM. Our results show that the closest marker is located 3.3 cM from the Rcg1 locus that may correspond to 576 kb.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Loci Gênicos/genética , Doenças das Plantas/genética , Tumores de Planta/genética , Vitis/genética , Vitis/microbiologia , Agrobacterium/fisiologia , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos , Testes Genéticos , Repetições de Microssatélites/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Tumores de Planta/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Recombinação Genética , Vitis/imunologia
5.
Theor Appl Genet ; 124(2): 277-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21947344

RESUMO

The Rpv3 locus is a major determinant of downy mildew resistance in grapevine (Vitis spp.). A selective sweep at this locus was revealed by the DNA genotyping of 580 grapevines, which include a highly diverse set of 265 European varieties that predated the spread of North American mildews, 82 accessions of wild species, and 233 registered breeding lines with North American ancestry produced in the past 150 years. Artificial hybridisation and subsequent phenotypic selection favoured a few Rpv3 haplotypes that were introgressed from wild vines and retained in released varieties. Seven conserved haplotypes in five descent groups of resistant varieties were traced back to their founders: (1) 'Munson', a cross between two of Hermann Jaeger's selections of V. rupestris and V. lincecumii made in the early 1880s in Missouri, (2) V. rupestris 'Ganzin', first utilised for breeding in 1879 by Victor Ganzin in France, (3) 'Noah', selected in 1869 from intermingled accessions of V. riparia and V. labrusca by Otto Wasserzieher in Illinois, (4) 'Bayard', a V. rupestris × V. labrusca offspring generated in 1882 by George Couderc in France, and (5) a wild form closely related to V. rupestris accessions in the Midwestern United States and introgressed into 'Seibel 4614' in the 1880s by Albert Seibel in France. Persistence of these Rpv3 haplotypes across many of the varieties generated by human intervention indicates that a handful of vines with prominent resistance have laid the foundation for modern grape breeding. A rampant hot spot of NB-LRR genes at the Rpv3 locus has provided a distinctive advantage for the adaptation of native North American grapevines to withstand downy mildew. The coexistence of multiple resistance alleles or paralogues in the same chromosomal region but in different haplotypes counteracts efforts to pyramidise them in a diploid individual via conventional breeding.


Assuntos
Cruzamento/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Oomicetos , Doenças das Plantas/microbiologia , Seleção Genética , Vitis/genética , Genótipo , Haplótipos/genética , Repetições de Microssatélites/genética , Linhagem , Doenças das Plantas/genética
6.
BMC Genet ; 10: 89, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-20042081

RESUMO

BACKGROUND: Grape powdery mildew is caused by the North American native pathogen Erysiphe necator. Eurasian Vitis vinifera varieties were all believed to be susceptible. REN1 is the first resistance gene naturally found in cultivated plants of Vitis vinifera. RESULTS: REN1 is present in 'Kishmish vatkana' and 'Dzhandzhal kara', two grapevines documented in Central Asia since the 1920's. These cultivars have a second-degree relationship (half sibs, grandparent-grandchild, or avuncular), and share by descent the chromosome on which the resistance allele REN1 is located. The REN1 interval was restricted to 1.4 cM using 38 SSR markers distributed across the locus and the segregation of the resistance phenotype in two progenies of collectively 461 offspring, derived from either resistant parent. The boundary markers delimit a 1.4-Mbp sequence in the PN40024 reference genome, which contains 27 genes with known functions, 2 full-length coiled-coil NBS-LRR genes, and 9 NBS-LRR pseudogenes. In the REN1 locus of PN40024, NBS genes have proliferated through a mixture of segmental duplications, tandem gene duplications, and intragenic recombination between paralogues, indicating that the REN1 locus has been inherently prone to producing genetic variation. Three SSR markers co-segregate with REN1, the outer ones confining the 908-kb array of NBS-LRR genes. Kinship and clustering analyses based on genetic distances with susceptible cultivars representative of Central Asian Vitis vinifera indicated that 'Kishmish vatkana' and 'Dzhandzhal kara' fit well into local germplasm. 'Kishmish vatkana' also has a parent-offspring relationship with the seedless table grape 'Sultanina'. In addition, the distant genetic relatedness to rootstocks, some of which are derived from North American species resistant to powdery mildew and have been used worldwide to guard against phylloxera since the late 1800's, argues against REN1 being infused into Vitis vinifera from a recent interspecific hybridisation. CONCLUSION: The REN1 gene resides in an NBS-LRR gene cluster tightly delimited by two flanking SSR markers, which can assist in the selection of this DNA block in breeding between Vitis vinifera cultivars. The REN1 locus has multiple layers of structural complexity compared with its two closely related paralogous NBS clusters, which are located some 5 Mbp upstream and 4 Mbp downstream of the REN1 interval on the same chromosome.


Assuntos
Evolução Molecular , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vitis/genética , Marcadores Genéticos , Genoma de Planta , Família Multigênica , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Duplicações Segmentares Genômicas
7.
Theor Appl Genet ; 116(3): 427-38, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18064436

RESUMO

Vitis vinifera 'Kishmish vatkana', a cultivated grapevine from Central Asia, does not produce visible symptoms in response to natural or artificial inoculation with the fungus Erysiphe necator Schwein., the casual agent of powdery mildew. 'Kishmish vatkana' allowed pathogen entry into epidermal cells at a rate comparable to that in the susceptible control Vitis vinifera 'Nimrang', but was able to limit subsequent hyphal proliferation. Density of conidiophores was significantly lower in 'Kishmish vatkana' (33.6+/-8.7 conidiophores mm(-2)) than in 'Nimrang' (310.5+/-24.0 conidiophores mm(-2)) by 120 h after inoculation. A progeny of 310 plants from a 'Nimrang 'Kishmish vatkana' cross were scored for the presence or absence of visible conidiophores throughout two successive seasons. Phenotypic segregation revealed the presence of a single dominant allele termed Resistance to Erysiphe necator 1 (REN1), which was heterozygous in 'Kishmish vatkana'. A bulked segregant analysis was carried out using 195 microsatellite markers uniformly distributed across the entire genome. For each marker, association with the resistance trait was inferred by measuring in the bulks the ratio of peak intensities of the two alleles inherited from 'Kishmish vatkana'. The phenotypic locus was assigned to linkage group 13, a genomic region in which no disease resistance had been reported previously. The REN1 position was restricted to a 7.4 cM interval by analyzing the 310 offspring for the segregation of markers that surrounded the target region. The closest markers, VMC9H4-2, VMCNG4E10-1 and UDV-020, were located 0.9 cM away from the REN1 locus.


Assuntos
Ascomicetos/fisiologia , Hifas/crescimento & desenvolvimento , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Vitis/genética , Vitis/microbiologia , Segregação de Cromossomos , Cromossomos de Plantas/genética , Marcadores Genéticos , Interações Hospedeiro-Parasita , Imunidade Inata/genética , Imunidade Inata/imunologia , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...