Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 27(10): 1806-1817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34621053

RESUMO

Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.


Assuntos
Evolução Clonal/genética , Hematopoiese Clonal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Mielodisplásicas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Feminino , Fator de Transcrição GATA2/genética , Mutação em Linhagem Germinativa/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Síndromes Mielodisplásicas/patologia , Análise de Célula Única
4.
Best Pract Res Clin Haematol ; 33(3): 101197, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33038986

RESUMO

Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.


Assuntos
Deficiência de GATA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Hematológicas , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Transtornos Mieloproliferativos , Proteínas Supressoras de Tumor/genética , Deleção Cromossômica , Cromossomos Humanos Par 7/metabolismo , Deficiência de GATA2/diagnóstico , Deficiência de GATA2/genética , Deficiência de GATA2/terapia , Fator de Transcrição GATA2/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Síndrome
5.
Leukemia ; 34(10): 2673-2687, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32555368

RESUMO

Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders.


Assuntos
Deficiência de GATA2/genética , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , RNA/genética , Mutação Silenciosa/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Síndromes de Imunodeficiência/genética , Masculino , Síndromes Mielodisplásicas/genética , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...